Solar Physics

, Volume 284, Issue 2, pp 447–466

Modeling of Hα Eruptive Events Observed at the Solar Limb

  • P. Kotrč
  • M. Bárta
  • P. Schwartz
  • Y. A. Kupryakov
  • L. K. Kashapova
  • M. Karlický
Advances in European Solar Physics


We present spectra and slit-jaw images of limb and on-disk eruptive events observed with a high temporal resolution by the Ondřejov Observatory optical spectrograph. Analysis of the time series of full width at half-maximum (FWHM) in Hα, Hβ, and radio and soft X-ray (SXR) fluxes indicates two phenomenologically distinct types of observations which differ significantly in the timing of FWHM and SXR/radio fluxes. We investigated one such unusual case of a limb eruptive event in more detail. Synthesis of all observed data supports the interpretation of the Hα broadening in the sense of regular macroscopic plasma motions, contrary to the traditional view (emission from warm dense plasma). The timing and observed characteristics indicate that we may have actually observed the initiation of a prominence eruption. We test this scenario via modeling of the initial phase of the flux rope eruption in a magnetohydrodynamic (MHD) simulation, calculating subsequently – under some simplifying assumptions – the modeled Hα emission and spectrum. The modeled and observed data correspond well. Nevertheless, the following question arises: To what extent is the resulting emission sensitive to the underlying model of plasma dynamics? To address this issue, we have computed a grid of kinematic models with various arbitrary plasma flow patterns and then calculated their resulting emission. Finally, we suggest a diagnostics based on the model and demonstrate that it can be used to estimate the Alfvén velocity and plasma beta in the prominence, which are otherwise hard to obtain.


Flares Eruptions Spectrum MHD Models Chromosphere Radio flux 


  1. Bárta, M., Karlický, M., Žemlička, R.: 2008, Plasmoid dynamics in flare reconnection and the frequency drift of the drifting pulsating structure. Solar Phys. 253, 173 – 189. doi:10.1007/s11207-008-9217-5. ADSCrossRefGoogle Scholar
  2. Bárta, M., Vršnak, B., Karlický, M.: 2008, Dynamics of plasmoids formed by the current sheet tearing. Astron. Astrophys. 477, 649 – 655. doi:10.1051/0004-6361:20078266. ADSMATHCrossRefGoogle Scholar
  3. Bárta, M., Büchner, J., Karlický, M., Skála, J.: 2011a, Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis. Astrophys. J. 737, 24. doi:10.1088/0004-637X/737/1/24. ADSCrossRefGoogle Scholar
  4. Bárta, M., Büchner, J., Karlický, M., Kotrč, P.: 2011b, Spontaneous current-layer fragmentation and cascading reconnection in solar flares. II. Relation to observations. Astrophys. J. 730, 47. doi:10.1088/0004-637X/730/1/47. ADSCrossRefGoogle Scholar
  5. Battaglia, M., Fletcher, L., Benz, A.O.: 2009, Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891 – 900. doi:10.1051/0004-6361/200811196. ADSCrossRefGoogle Scholar
  6. Gunár, S., Heinzel, P., Anzer, U.: 2011, Synthetic differential emission measure curves of prominence fine structures. Astron. Astrophys. 528, A47. doi:10.1051/0004-6361/201015957. ADSCrossRefGoogle Scholar
  7. Havlíčková, E., Kotrč, P.: 2006, Spectra and models of prominence mass motion. Cent. Eur. Astrophys. Bull. 30, 43 – 53. ADSGoogle Scholar
  8. Heinzel, P., Anzer, U.: 2001, Prominence fine structures in a magnetic equilibrium: two-dimensional models with multilevel radiative transfer. Astron. Astrophys. 375, 1082 – 1090. doi:10.1051/0004-6361:20010926. ADSCrossRefGoogle Scholar
  9. Karlický, M., Bárta, M.: 2011, Successive merging of plasmoids and fragmentation in a flare current sheet and their X-ray and radio signatures. Astrophys. J. 733, 107. doi:10.1088/0004-637X/733/2/107. ADSCrossRefGoogle Scholar
  10. Karlický, M., Kliem, B.: 2010, Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source I. Observations and interpretation. Solar Phys. 266, 71 – 89. doi:10.1007/s11207-010-9606-4. ADSCrossRefGoogle Scholar
  11. Karlický, M., Kotrč, P., Kupryakov, Y.A.: 2001, Axially-symmetric velocities in the 15 May 2000 eruptive prominence. Solar Phys. 199, 145 – 155. ADSCrossRefGoogle Scholar
  12. Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. doi:10.1103/PhysRevLett.96.255002. ADSCrossRefGoogle Scholar
  13. Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715 – 728. ADSGoogle Scholar
  14. Kliem, B., Linton, M.G., Török, T., Karlický, M.: 2010, Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source II. Numerical modeling. Solar Phys. 266, 91 – 107. doi:10.1007/s11207-010-9609-1. ADSCrossRefGoogle Scholar
  15. Kotrč, P.: 1997, Video cameras in the Ondrejov flare spectrograph – results and prospects. Hvar Obs. Bull. 21, 97 – 108. ADSGoogle Scholar
  16. Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., Kim, Y.H.: 2012, Initiation of coronal mass ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J. 746, 67. doi:10.1088/0004-637X/746/1/67. ADSCrossRefGoogle Scholar
  17. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375 – 2392. doi:10.1029/1999JA900477. ADSCrossRefGoogle Scholar
  18. Magara, T., Mineshige, S., Yokoyama, T., Shibata, K.: 1996, Numerical simulation of magnetic reconnection in eruptive flares. Astrophys. J. 466, 1054 – 1066. doi:10.1086/177575. ADSCrossRefGoogle Scholar
  19. Ozaki, M., Sato, T.: 1997, Interactions of convecting magnetic loops and arcades. Astrophys. J. 481, 524. doi:10.1086/304036. ADSCrossRefGoogle Scholar
  20. Priest, E.R.: 1984, Solar Magneto-Hydrodynamics, Geophysics and Astrophysics Monographs, Reidel, Dordrecht. Google Scholar
  21. Shibata, K., Tanuma, S.: 2001, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473 – 482. ADSGoogle Scholar
  22. Švestka, Z.: 1976, Solar Flares. Springer, Berlin. CrossRefGoogle Scholar
  23. Švestka, Z., Fritzová, L.: 1956, The width of Hα in solar flares. Bull. Astron. Inst. Czechoslov. 7, 30. ADSGoogle Scholar
  24. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 – 720. ADSGoogle Scholar
  25. Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100. doi:10.1086/462412. ADSCrossRefGoogle Scholar
  26. Valníček, B., Letfus, V., Blaha, M., Švestka, Z., Seidl, Z.: 1959, The flare spectrograph at Ondřejov. Bull. Astron. Inst. Czechoslov. 10, 149. ADSGoogle Scholar
  27. Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163 – L166. doi:10.1086/432910. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P. Kotrč
    • 1
  • M. Bárta
    • 1
  • P. Schwartz
    • 1
    • 2
  • Y. A. Kupryakov
    • 1
    • 3
  • L. K. Kashapova
    • 4
  • M. Karlický
    • 1
  1. 1.Astronomical InstituteAcademy of SciencesOndřejovCzech Republic
  2. 2.Astronomical InstituteSlovak Academy of SciencesTatranská LomnicaSlovakia
  3. 3.Sternberg Astronomical InstituteMoscow UniversityMoscowRussia
  4. 4.Radioastrophysical DepartmentInstitute of Solar-Terrestrial PhysicsIrkutskRussia

Personalised recommendations