Multiwavelength Study of a Solar Eruption from AR NOAA 11112: II. Large-Scale Coronal Wave and Loop Oscillation

  • 516 Accesses

  • 21 Citations


We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈ 1390 to ≈ 830 km s−1) propagating ahead of a slower wave (decelerating from ≈ 416 to ≈ 166 km s−1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈ 800 km s−1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈ 0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈ 340 – 350 km s−1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈ 320 to ≈ 254 km s−1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131 – 149. doi: 10.1007/BF00145734 .

  2. Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an Hα Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. doi: 10.1088/2041-8205/745/2/L18 .

  3. Aschwanden, M.J., Schrijver, C.J.: 2011, Coronal loop oscillations observed with Atmospheric Imaging Assembly-Kink mode with cross-sectional and density oscillations. Astrophys. J. 736, 102. doi: 10.1088/0004-637X/736/2/102 .

  4. Attrill, G.D.R.: 2010, Dispelling illusions of reflection: A new analysis of the 2007 May 19 coronal “wave” event. Astrophys. J. 718, 494 – 501. doi: 10.1088/0004-637X/718/1/494 .

  5. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT Waves”. Astrophys. J. 569, 1009 – 1015. doi: 10.1086/339402 .

  6. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434 .

  7. Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153 – L156. doi: 10.1086/503868 .

  8. Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112 – L115. doi: 10.1088/0004-637X/698/2/L112 .

  9. Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8, 1.

  10. Chen, P.F., Fang, C.: 2011, “EIT waves” and coronal mass ejections. In: Choudhuri, A.R., Banerjee, D. (eds.) ASI CS-2, 229 – 239.

  11. Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202 – 1210. doi: 10.1086/428084 .

  12. Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. doi: 10.1088/2041-8205/732/2/L20 .

  13. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99 – L102. doi: 10.1086/341486 .

  14. Cho, K.S., Bong, S.C., Moon, Y.J., Shanmugaraju, A., Kwon, R.Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. doi: 10.1051/0004-6361/201015578 .

  15. Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604 – 611. doi: 10.1086/432250 .

  16. Dai, Y., Auchère, F., Vial, J.C., Tang, Y.H., Zong, W.G.: 2010, Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys. J. 708, 913 – 919. doi: 10.1088/0004-637X/708/2/913 .

  17. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi: 10.1007/BF00733432 .

  18. Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107 – 129. doi: 10.1023/A:1005249416605 .

  19. Eto, S., Isobe, H., Narukage, N., Asai, A., Morimoto, T., Thompson, B., Yashiro, S., Wang, T., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Relation between a Moreton wave and an EIT wave observed on 1997 November 4. Publ. Astron. Soc. Japan 54, 481 – 491.

  20. Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: A review of “EIT waves”. Space Sci. Rev. 158, 365 – 396. doi: 10.1007/s11214-010-9710-7 .

  21. Harra, L.K., Sterling, A.C.: 2003, Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material. Astrophys. J. 587, 429 – 438. doi: 10.1086/368079 .

  22. Harra, L.K., Sterling, A.C., Gömöry, P., Veronig, A.: 2011, Spectroscopic observations of a coronal Moreton wave. Astrophys. J. Lett. 737, L4. doi: 10.1088/2041-8205/737/1/L4 .

  23. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4 .

  24. Hudson, H.S., Warmuth, A.: 2004, Coronal loop oscillations and flare shock waves. Astrophys. J. Lett. 614, L85 – L88. doi: 10.1086/425314 .

  25. Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121 – 149. doi: 10.1023/A:1022904125479 .

  26. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0 .

  27. Khan, J.I., Aurass, H.: 2002, X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018 – 1031. doi: 10.1051/0004-6361:20011707 .

  28. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703, L118 – L122. doi: 10.1088/0004-637X/703/2/L118 .

  29. Kienreich, I.W., Veronig, A.M., Muhr, N., Temmer, M., Vršnak, B., Nitta, N.: 2011, Case study of four homologous large-scale coronal waves observed on 2010 April 28 and 29. Astrophys. J. Lett. 727, L43. doi: 10.1088/2041-8205/727/2/L43 .

  30. Klassen, A., Pohjolainen, S., Klein, K.L.: 2003, Type II radio precursor and X-ray flare emission. Solar Phys. 218, 197 – 210. doi: 10.1023/B:SOLA.0000013034.61996.c4 .

  31. Klassen, A., Karlický, M., Aurass, H., Jiřička, K.: 1999, On two distinct shocks during the flare of 9 July 1996. Solar Phys. 188, 141 – 154.

  32. Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron. Astrophys. Suppl. Ser. 141, 357 – 369. doi: 10.1051/aas:2000125 .

  33. Klein, K.L., Khan, J.I., Vilmer, N., Delouis, J.M., Aurass, H.: 1999, X-ray and radio evidence on the origin of a coronal shock wave. Astron. Astrophys. 346, 53 – 56.

  34. Kumar, P., Park, S.-H., Cho, K.-S., Bong, S.-C.: 2012, Multiwavelength study of a solar eruption from AR NOAA 11112 I. Flux emergence, sunspot rotation and triggering of a solar flare. Solar Phys. accepted. arXiv:1210.3413 . ADS: 2012arXiv1210.3413K .

  35. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. doi: 10.1007/s11207-011-9776-8 .

  36. Magara, T., Chen, P., Shibata, K., Yokoyama, T.: 2000, A unified model of coronal mass ejection-related type II radio bursts. Astrophys. J. Lett. 538, L175 – L178. doi: 10.1086/312813 .

  37. Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305 – 317. doi: 10.1007/s11207-008-9220-x .

  38. Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Žic, T.: 2010, Origin of coronal shock waves associated with slow coronal mass ejections. Astrophys. J. 718, 266 – 278. doi: 10.1088/0004-637X/718/1/266 .

  39. Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Publ. Astron. Soc. Pac. 72, 357. doi: 10.1086/127549 .

  40. Muhr, N., Vršnak, B., Temmer, M., Veronig, A.M., Magdalenić, J.: 2010, Analysis of a global Moreton wave observed on 2003 October 28. Astrophys. J. 708, 1639 – 1649. doi: 10.1088/0004-637X/708/2/1639 .

  41. Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739, 89. doi: 10.1088/0004-637X/739/2/89 .

  42. Narukage, N., Hudson, H.S., Morimoto, T., Akiyama, S., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Simultaneous observation of a Moreton wave on 1997 November 3 in Hα and soft X-rays. Astrophys. J. Lett. 572, L109 – L112. doi: 10.1086/341599 .

  43. Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983 – 1013. doi: 10.1086/147104 .

  44. Patsourakos, S., Vourlidas, A.: 2009, “Extreme Ultraviolet Waves” are waves: First quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182 – L186. doi: 10.1088/0004-637X/700/2/L182 .

  45. Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259, 49 – 71. doi: 10.1007/s11207-009-9386-x .

  46. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3 .

  47. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. doi: 10.1007/BF00146478 .

  48. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2 .

  49. Smith, S.F., Harvey, K.L.: 1971, Observational effects of flare-associated waves. In: Macris, C.J. (ed.) Physics of the Solar Corona, Astrophys. Space Sci. Lib. 27, 156.

  50. Straka, R.M., Castelli, J.P.: 1970, Observations at the Sagamore Hill solar radio observatory. Nature 226, 1149 – 1152. doi: 10.1038/2261149a0 .

  51. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465 – 2468. doi: 10.1029/98GL50429 .

  52. Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.P., St. Cyr, O.C., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, L151 – L154. doi: 10.1086/312030 .

  53. Thompson, B.J., Reynolds, B., Aurass, H., Gopalswamy, N., Gurman, J.B., Hudson, H.S., Martin, S.F., St. Cyr, O.C.: 2000, Observations of the 24 September 1997 coronal flare waves. Solar Phys. 193, 161 – 180.

  54. Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30 – 44. doi: 10.1007/BF00146996 .

  55. Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341.

  56. Uchida, Y.: 1974, Behavior of the flare produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431 – 449. doi: 10.1007/BF00162436 .

  57. Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113 – L116. doi: 10.1086/590493 .

  58. Veronig, A.M., Temmer, M., Vršnak, B., Thalmann, J.K.: 2006, Interaction of a Moreton/EIT wave and a coronal hole. Astrophys. J. 647, 1466 – 1471. doi: 10.1086/505456 .

  59. Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57 – L62. doi: 10.1088/2041-8205/716/1/L57 .

  60. Veronig, A.M., Gomory, P., Kienreich, I.W., Muhr, N., Vršnak, B., Temmer, M., Warren, H.P.: 2011, Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743, L10.

  61. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves: Invited review. Solar Phys. 253, 215 – 235. doi: 10.1007/s11207-008-9241-5 .

  62. Vršnak, B., Lulić, S.: 2000a, Formation of coronal MHD shock waves – I. The basic mechanism. Solar Phys. 196, 157 – 180.

  63. Vršnak, B., Lulić, S.: 2000b, Formation of coronal MHD shock waves – II. The pressure pulse mechanism. Solar Phys. 196, 181 – 197.

  64. Vršnak, B., Ruždjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331 – 351. doi: 10.1007/BF00795667 .

  65. Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002, Flare waves observed in Helium I 10 830 Å. A link between Hα Moreton and EIT waves. Astron. Astrophys. 394, 299 – 310. doi: 10.1051/0004-6361:20021121 .

  66. Wang, Y.M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89 – L93. doi: 10.1086/318178 .

  67. Warmuth, A.: 2007, Large-scale waves and shocks in the solar corona. In: Klein, K.-L., MacKinnon, A.L. (eds.) Lecture Notes in Physics 725, Springer, Berlin, 107.

  68. Warmuth, A.: 2010, Large-scale waves in the solar corona: The continuing debate. Adv. Space Res. 45, 527 – 536. doi: 10.1016/j.asr.2009.08.022 .

  69. Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151. doi: 10.1051/0004-6361/201116685 .

  70. Warmuth, A., Mann, G., Aurass, H.: 2005, First soft X-ray observations of global coronal waves with the GOES solar X-ray Imager. Astrophys. J. Lett. 626, L121 – L124. doi: 10.1086/431756 .

  71. Warmuth, A., Vršnak, B., Aurass, H., Hanslmeier, A.: 2001, Evolution of two EIT/Hα Moreton waves. Astrophys. J. Lett. 560, L105 – L109. doi: 10.1086/324055 .

  72. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004a, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101 – 1115. doi: 10.1051/0004-6361:20034332 .

  73. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004b, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117 – 1129. doi: 10.1051/0004-6361:20034333 .

  74. Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT Waves: A changing understanding over a solar cycle. Space Sci. Rev. 149, 325 – 353. doi: 10.1007/s11214-009-9612-8 .

  75. Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089 – 25102. doi: 10.1029/2000JA000447 .

  76. Wuelser, J.P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) SPIE CS-5171, 111 – 122. doi: 10.1117/12.506877 .

  77. Zhukov, A.N.: 2011, EIT wave observations and modeling in the STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1096 – 1116. doi: 10.1016/j.jastp.2010.11.030 .

Download references


We express our gratitude to the referee for his/her valuable and constructive comments/suggestions, which improved the manuscript considerably. SDO is a mission for NASA’s Living With a Star (LWS) Program. We thank the STEREO/SECCHI teams for their open data policy. We are thankful for the radio data obtained from Sagamore Hill station. SOHO is a project of international cooperation between ESA and NASA. PFC is supported by the Chinese foundation NSFC (11025314, 10878002, and 10933003) and 2011CB811402. PK thanks Prof. D.E. Innes for several fruitful discussions during his visit to MPS. PK thanks Dr. A.K. Srivastava for reading/discussing the manuscript. This work has been supported by the “Development of Korea Space Weather Center” project of KASI, and the KASI basic research fund.

Author information

Correspondence to Pankaj Kumar.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

st195.avi (1.0 MB)

aia193.avi (3.9 MB)

aia211.avi (1.6 MB)

st195.avi (1.0 MB)

aia193.avi (3.9 MB)

aia211.avi (1.6 MB)

aia171.avi (2.2 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, P., Cho, K., Chen, P.F. et al. Multiwavelength Study of a Solar Eruption from AR NOAA 11112: II. Large-Scale Coronal Wave and Loop Oscillation. Sol Phys 282, 523–541 (2013) doi:10.1007/s11207-012-0158-7

Download citation


  • Solar flare – coronal loops
  • Magnetic field
  • Flux rope
  • Magnetic reconnection