Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cosmic-Ray Spectrum Approximation Model: Experimental Results and Comparison with Other Models

  • 276 Accesses

  • 3 Citations


We discuss a model which parameterizes the cosmic-ray (CR) spectrum at different physical conditions, which include the most important effects controlling the CR intensity, like convection–diffusion and energy losses. By a suitable choice of parameters the proposed model results in two approximations: one close to a “force–field” model (describing the energy losses of CRs in the inner heliosphere) and a “convection–diffusion” equation (giving the reduction of CR intensity in the outer heliosphere). The BESS (Balloon-borne Experiment with Superconducting Spectrometer) experimental spectra of galactic protons and helium nuclei are fitted by the model spectra. The calculation of the unknown parameters is performed using a constrained least squares method as an alternative to the standard chi-square minimization method, because the data contain not only random errors, but also systematic ones. The CR spectrum approximation (CRSA) model is compared to the Moscow State University (MSU) model and the Badhwar and O’Neill (Badhwar and O’Neill, Adv. Space. Res. 14, 749, 1994; Adv. Space Res. 17, 7, 1994) model; we show that depending on the choice of the model parameters it can be examined in the context of one of these two models. We derive a relation between the parameters of the CRSA and MSU models for rigidities above about 10 GV (drift effects are ignored) during periods of low to approximately average levels of solar activity. The drawbacks of the proposed approximation are that: i) the model parameters do not depend on rigidity and ii) the model does not take into account general trends in the variations of the heliospheric magnetic field; thus, the influence of the drift effects on the shape of the spectral curves for different magnetic field polarity swings is ignored.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2


  1. 1.

    MINIUT is the title of the most common standard package for minimizing general N-dimensional functions in high-energy physics (James and Roos 1975; PyMinuit2, http://code.google.com/p/pyminuit2/ ).


  1. Badhwar, G.D., O’Neill, P.M.: 1994, Adv. Space Res. 14, 749.

  2. Badhwar, G.D., O’Neill, P.M.: 1994, Adv. Space Res. 17, 7.

  3. Belov, A., Drobzhev, V., Eroshenko, E., Kryakunova, O., Nikolaevskiy, N., Yanke, V., Zhantaev, Z.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity (IAU S223), Cambridge University Press, Cambridge, 543.

  4. Blobel, V.: 1997, www.desy.de/~blobel/condfit.ps

  5. Blobel, V.: 2003, http://graduierten-kurse.physi.uni-heidelberg.de/WiSe2003/lectures/blobel/export/master.pdf .

  6. Blobel, V.: 2009, http://www.itp.uzh.ch/cosmostats/talks/blobel_asconatalk.pdf .

  7. Blobel, V.: 2010, http://www.desy.de/~blobel/apltalk.pdf

  8. Boella, G., Gervasi, M., Mariani, S., Rancoita, P.G., Usoskin, I.G.: 2001, J. Geophys. Res. 106, 29355.

  9. Botje, M.: 2002, J. Phys. G 28, 779.

  10. Buchvarova, M.: 2009, Compt. Rend. Acad. Bulg. Sci. 62, 1439.

  11. Buchvarova, M., Velinov, P., Buchvarov, I.: 2011, Planet. Space Sci. 59, 355.

  12. Burger, R.A., Potgieter, M.S., Heber, B.: 2000, J. Geophys. Res. 105, 27447.

  13. Caballero-Lopez, R.A., Moraal, H.: 2004, J. Geophys. Res. 109, A01101.

  14. Chowdhury, P., Dwivedi, B.N., Ray, P.C.: 2011, New Astron. 16, 430.

  15. Cooper-Sarkar, A.M.: 2002, J. Phys. G, Nucl. Part. Phys. 28, 2669.

  16. Dorman, L.I., Gushchina, R.T.: 1978, In: 15th International Cosmic Ray Conference, Conference Papers 3, Bulgarian Academy of Sciences, Sofia, 263.

  17. Dorman, L.I.: 2004, Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer Academic, Dordrecht.

  18. Eroshenko, E., Velinov, P., Belov, A., Yanke, V., Pletnikov, E., Tassev, Y., Mishev, A., Mateev, L.: 2009, In: Király, P., Kudela, K., Stehlík, M., Wolfendale, A.W. (eds.) 21th European Cosmic Ray Symposium S1-20, Slovak Academy of Sciences, Bratislava, 127.

  19. Fisk, L.A., Axford, W.I.: 1969, J. Geophys. Res. 74, 4973.

  20. Fisk, L.A., Forman, M.A., Axford, W.I.: 1973, J. Geophys. Res. 78, 995.

  21. Forman, M.A.: 1970, Planet. Space Sci. 18, 25.

  22. Forman, M.A., Fisk, L.A., Axford, W.I.: 1973, In: 13th International Conference on Cosmic Rays MG and SP Sessions, Denver, Colorado, 663.

  23. Gast, H., Schael, S.: 2009, In: Bednarek, W., Giller, M. (eds.) 31st International Cosmic Ray Conference ICRC0338, Lodz, Poland, 338.

  24. Gleeson, L.J., Axford, W.I.: 1967, Astrophys. J. 149, L115.

  25. Gleeson, L.J., Axford, W.I.: 1968a, Astrophys. J. 154, 1011.

  26. Gleeson, L.J., Axford, W.I.: 1968b, Can. J. Phys. 46, S937.

  27. Gleeson, L.J., Urch, I.A.: 1973, Astrophys. Space Sci. 25, 387.

  28. Gleeson, L.J., Webb, G.M.: 1975, In: 14th International Cosmic Ray Conference MG 2-1, Munich, Germany, 893.

  29. Gupta, M., Mishra, V.K., Mishra, A.P.: 2006, Indian J. Radio Space Phys. 35, 167.

  30. James, F., Roos, M.: 1975, Comput. Phys. Commun. 10, 343.

  31. James, F.: 1994, MINUIT, Reference Manual, Version 94.1, CERN Program Library Long Writeup D506, CERN, Geneva.

  32. James, F., Winkler, M.: 2004, MINUIT User’s Guide, CERN, Geneva.

  33. Kane, R.P.: 2003, J. Geophys. Res. 108, 1379.

  34. Kane, R.P.: 2005, Indian J. Radio Space Phys. 34, 299.

  35. Kudela, K., Ananth, A.G., Venkatesan, D.: 1991, J. Geophys. Res. 96, 15871.

  36. Kudela, K., Storini, M., Hoffer, M., Belov, A.: 2000, Space Sci. Rev. 93, 153.

  37. Mavromichalaki, H., Belehaki, A., Rafios, X.: 1998, Astron. Astrophys. 330, 764.

  38. Mavromichalaki, H., Paouris, E., Karalidi, T.: 2007, Solar Phys. 245, 369.

  39. McDonald, F.B.: 1998, Space Sci. Rev. 83, 33.

  40. Moraal, H.: 1976, Space Sci. Rev. 19, 845.

  41. Moraal, H.: 2011, Space Sci. Rev. 1, 291.

  42. Nymmik, R.A.: 1999, Radiat. Meas. 30, 669.

  43. Nymmik, R.A., Panasyuk, M.I., Suslov, A.A.: 1996, Adv. Space Res. 17, 19.

  44. Nymmik, R.A., Panasyuk, M.I., Pervaja, T.I., Suslov, A.A.: 1992, Nucl. Tracks Radiat. Meas. 20, 427.

  45. O’Brien, K.: 1971, Il Nuovo Cimento A 3, 521.

  46. Parker, E.N.: 1963, Interplanetary Dynamical Processes, John Wiley, New York.

  47. Parker, E.N.: 1965, Planet. Space Sci. 13, 9.

  48. Potgieter, M.S.: 2000, J. Geophys. Res. 105, 18295.

  49. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge.

  50. Pumplin, J., Stump, D., Brock, R., Casey, D., Huston, J., Kalk, J., Lai, H.L., Tung, W.K.: 2001, Phys. Rev. D 65, 14013.

  51. Reinecke, J.P.L., Potgieter, M.S.: 1990, In: Protheroe, R.J. (ed.) 21st International Cosmic Ray Conference SH6 1-7, Univ. Adelaide, Australia, 17.

  52. Reinecke, J.P.L., Potgieter, M.S.: 1994, J. Geophys. Res. 99, 14761.

  53. Sabbah, I., Rybanský, M.: 2006, J. Geophys. Res. 111, A01105.

  54. Shikaze, Y., Haino, S., Abe, K., Fuke, H., Hams, T., Kim, K.C., Makida, Y., Matsuda, S., Mitchell, J.W., Moiseev, A.A., et al.: 2007, Astropart. Phys. 28, 154.

  55. Storini, M.: 1995, Adv. Space Res. 16, 51.

  56. Storini, M.: 2006, http://www.lip.pt/events/2006/ecrs/talks/192.ppt .

  57. Stump, D., Pumplin, J., Brock, R., Casey, D., Huston, J., Kalk, J., Lai, H.L., Tung, W.K.: 2001, Phys. Rev. D 65, 014012.

  58. Suslov, A.A., Nymmik, R.A.: 1990, In: Protheroe, R.J. (ed.) 21st International Cosmic Ray Conference SH6 1-11, Univ. Adelaide, Australia, 33.

  59. Tylka, A.J., Adams, J.H. Jr., Boberg, P.R., Brownstein, B., Dietrich, W.F., Flueckiger, E.O., Petersen, E.L., Shea, M.A., Smart, D.F., Smith, E.C.: 1997, IEEE Trans. Nucl. Sci. 44, 2150.

  60. Usoskin, I.G., Alanko-Huotari, K., Kovaltsov, G.A., Mursula, K.: 2005, J. Geophys. Res. 110, A12.

  61. Van Allen, J.A.: 2000, Geophys. Res. Lett. 27, 2453.

  62. Velinov, P.I.Y., Mateev, L.: 2008, J. Atmos. Solar-Terr. Phys. 70, 574.

  63. Velinov, P.I.Y., Ruder, H., Mateev, L., Buchvarova, M., Kostov, V.: 2004, Adv. Space Res. 33, 232.

  64. Webber, W.R., Lockwood, J.A.: 1988, J. Geophys. Res. 93, 8735.

  65. Yamamoto, A.: 2007, In: Katsuhiko, S., Hisano, J. (eds.) Energy Budget in the High Energy Universe, World Scientific, Singapore, 94.

Download references

Author information

Correspondence to M. Buchvarova.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchvarova, M., Draganov, D. Cosmic-Ray Spectrum Approximation Model: Experimental Results and Comparison with Other Models. Sol Phys 284, 599–614 (2013). https://doi.org/10.1007/s11207-012-0157-8

Download citation


  • Cosmic ray spectrum
  • Modeling
  • Solar cycle