Advertisement

Solar Physics

, Volume 281, Issue 1, pp 461–489 | Cite as

Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

  • C. J. FarrugiaEmail author
  • B. Harris
  • M. Leitner
  • C. Möstl
  • A. B. Galvin
  • K. D. C. Simunac
  • R. B. Torbert
  • M. B. Temmer
  • A. M. Veronig
  • N. V. Erkaev
  • A. Szabo
  • K. W. Ogilvie
  • J. G. Luhmann
  • V. A. Osherovich
THE SUN 360

Abstract

We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 – 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfvén Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind–magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3±0.9 mV m−1 and a CPCP of 37.3±20.2 kV. The auroral activity is closely correlated to the prevalent stream–stream interactions. We suggest that the Alfvén wave trains in the fast streams and Kelvin–Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield’s (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R E and 14.35 R E, respectively. When comparing with Fairfield’s (1971) classic result, we find that the subsolar magnetosheath is thinner by ∼1 R E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield’s model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

Keywords

Flare Solar Wind Carrington Rotation Slow Solar Wind Interplanetary Coronal Mass Ejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to the referee for many helpful suggestions. We thank Marc Hairston, Jana Safrankova and Zdenek Nemecek for helpful comments. For the data used in the geomagnetic response section, we thank the World Data Center for Geomagnetism at the Kyoto web site, Japan; the OMNI website at Goddard Space Flight Center, USA; and the Defense Meteorological Satellite Program (DMSP) program, NOAA. Work at UNH was supported by NASA grants NNX10AQ29G and NAS5-03131. This work has received funding from the European Commissions’s Seventh Framework Programme (FP7/2007 – 2013) under the grant agreement No. 263253 [COMESEP]. V.O. was supported by NASA Grant NNXO9AR80G. M.T. greatly acknowledges the Austrian Science Fund (FWF): FWF V195-N16. This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program.

References

  1. Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., et al.: 2008, The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235. ADSCrossRefGoogle Scholar
  2. Balogh, A., Carr, C.M., Acũna, M.H., Dunlop, M.W., Beek, T.J., Brown, P., Fornacon, K.-H., et al.: 2001, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207. ADSCrossRefGoogle Scholar
  3. Boyle, C.B., Reiff, P.H., Hairston, M.R.: 1997, Empirical polar cap potentials. J. Geophys. Res. 102, 111. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F., Lazarus, A.J.: 2000, Log-normal distributions and spectra of solar wind plasma fluctuations: Wind 1995 – 1998. J. Geophys. Res. 105, 2357. ADSCrossRefGoogle Scholar
  5. Clette, F., Berghmans, D., Vanlommel, P.R., van der Linden, A.M., Koeckelenbergh, A., Wauters, L.: 2007, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919. ADSCrossRefGoogle Scholar
  6. Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.): 2010, SOHO-23: Understanding a Peculiar Solar Minimum. ASP CS-428. Google Scholar
  7. Engebretson, M., Glassmeier, K.-H., Stellmacher, M., Hughes, E.J., Lühr, H.: 1998, The dependence of high-latitude PC5 wave power on solar wind velocity and on the phase of high-speed solar wind streams. J. Geophys. Res. 103, 26271. ADSCrossRefGoogle Scholar
  8. Erkaev, N.V.: 1988, Results of the investigation of MHD flow around the magnetosphere. Geomagn. Aeron. 28, 455. ADSGoogle Scholar
  9. Fainberg, J., Osherovich, V.A.: 2002, Solar wind quasi-invariant as a heliospheric index of solar activity. In: Solar Variability: From Core to Outer Frontiers SP-506, ESA, Noordwijk, 43. Google Scholar
  10. Fainberg, J., Osherovich, V.A., Stone, R.G.: 2001, Pioneer Venus Orbiter observations of a solar wind quasi-invariant. Geophys. Res. Lett. 28, 1447. doi: 10.1029/2000GL012160. ADSCrossRefGoogle Scholar
  11. Fairfield, D.H.: 1971, Average and unusual locations of the Earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700. ADSCrossRefGoogle Scholar
  12. Farris, M.H., Russell, C.T.: 1994, Determining the standoff distance of the bow shock: Mach number dependence and use of models. J. Geophys. Res. 99, 17681. ADSCrossRefGoogle Scholar
  13. Farrugia, C.J., Erkaev, N.V., Biernat, H.K., Burlaga, L.F.: 1995, Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res. 100, 19245. ADSCrossRefGoogle Scholar
  14. Feynman, J., Ruzmaikin, A.: 2011, The Sun’s strange behavior: Maunder Minimum or Gleissberg Cycle? Solar Phys. 272, 351. ADSCrossRefGoogle Scholar
  15. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, E., Möbius, E., et al.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. doi: 10.1007/s11214-007-9296-x. ADSCrossRefGoogle Scholar
  16. Gordeev, E.I., Sergeev, V., Pulkkinen, T.I., Palmroth, M.: 2011, Contribution of magnetotail reconnection to the cross-polar cap electric potential drop. J. Geophys. Res. 116, A08219. doi: 10.1029/2011JA016609. ADSCrossRefGoogle Scholar
  17. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. ADSCrossRefGoogle Scholar
  18. Hairston, M.R., Hill, T.W., Heelis, R.A.: 2003, Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm. Geophys. Res. Lett. 30, 1325. doi: 10.1029/2002GL015894. ADSCrossRefGoogle Scholar
  19. Hairston, M.R., Drake, T.R., Skoug, R.: 2005, Saturation of the ionospheric polar cap potential during the October – November, 2003 superstorms. J. Geophys. Res. 110, A09S26. doi: 10.1029/2004JA010864. ADSCrossRefGoogle Scholar
  20. Harris, B.: 2011, Observational aspects of IMF draping around the magnetosphere. MS Thesis, UNH. Google Scholar
  21. Kan, J.R., Lee, L.C.: 1979, Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 6, 577. ADSCrossRefGoogle Scholar
  22. Kilpua, E.K.J., Pomoell, J., Voulidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., Simunac, K.: 2009, Stereo observations of interplanetary coronal mass ejections during solar minimum period. Ann. Geophys. 27, 4491. ADSCrossRefGoogle Scholar
  23. King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104. doi: 10.1029/2004JA010649. ADSCrossRefGoogle Scholar
  24. Kokubun, S., Yamamoto, T., Acũna, M.H., Hayashi, K., Shiokawa, K., Kawano, H.: 1995, The geotail magnetic field experiment. J. Geomagn. Geoelectr. 46, 7. CrossRefGoogle Scholar
  25. Kullen, A., Karlsson, T., Cumnock, J.A., Sundberg, T.: 2010, Occurrence and properties of substorms associated with pseudobreakups. J. Geophys. Res. 114, 115, A12310. doi: 10.1029/2010JA015866. Google Scholar
  26. Lavraud, B., Borovsky, J.E.: 2008, Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections. J. Geophys. Res. 114, A00B08. doi: 10.0129/2008JA13192. CrossRefGoogle Scholar
  27. Leitner, M., Farrugia, C.J.: 2010, Solar wind quasi-invariant within ICMEs. In: Solar Wind 12, AIP CP-1216, 652. Google Scholar
  28. Leitner, M., Vörös, Z., Leubner, M.P.: 2009, Introducing log-kappa distributions for solar wind analysis. J. Geophys. Res. 114, A12104. doi: 10.1029/2009JA014476. ADSCrossRefGoogle Scholar
  29. Leitner, M., Farrugia, C.J., Vörös, Z.: 2011, Change of solar wind quasi-invariant in solar cycle 23 – analysis of PDFs. J. Atmos. Solar-Terr. Phys. 73, 290. ADSCrossRefGoogle Scholar
  30. Leitner, M., Farrugia, C.J., Osherovich, V.A., Fainberg, J., Biernat, H.K., Ogilvie, K.W., Schwenn, R., Torbert, R.B.: 2005, The relative distribution of the magnetic and plasma kinetic energy densities in the inner heliosphere (< 1 AU). In: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere SP-592, ESA, Noordwijk, 743. Google Scholar
  31. Leitner, M., Farrugia, C.J., Galvin, A., Biernat, H.K., Osherovich, V.A.: 2009, The solar wind quasi-invariant observed by STEREO-A and B at solar minimum 2007, and comparison with two other minima. Solar Phys. 259, 381. doi: 10.1007/s11207-009-9412-z. ADSCrossRefGoogle Scholar
  32. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., et al.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. ADSCrossRefGoogle Scholar
  33. Lepping, R.P., Wu, C.C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 2007 – 2009 minimum: Frequency of occurrence and some unusual properties. Solar Phys. 274. doi: 10.1007/s11207-010-9646-9.
  34. Lockwood, M., Hairston, M., Finch, I., Rouillard, A.: 2009, Transpolar voltage and polar cap UX during the substorm cycle. J. Geophys. Res. 114, A0120. doi: 10.1029/2008JA013697. Google Scholar
  35. Luhmann, J., Zhang, T.L., Petrinec, S., Russell, C., Gazis, P., Barnes, A.: 1993, Solar cycle 21 effects on the interplanetary magnetic field and related parameters at 0.7 and 1.0 AU. J. Geophys. Res. 98, 5559. ADSCrossRefGoogle Scholar
  36. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products. Space Sci. Rev. 136, 117. ADSCrossRefGoogle Scholar
  37. McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., et al.: 2008, The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 141, 277. ADSCrossRefGoogle Scholar
  38. Merka, J., Szabo, A., Safrankova, J., Nemecek, S.: 2003, Earth’s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison. J. Geophys. Res. 108, 1269. doi: 10.1029/2002JA009697. CrossRefGoogle Scholar
  39. Mukai, T., Machida, S., Hirahara, M., Teresawa, T., Kaya, N., Obara, T., Ejiri, M., Nishida, A.: 1994, The Low-Energy Particle (LEP) experiment onboard the Geotail satellite. J. Geomagn. Geoelectr. 46, 669. CrossRefGoogle Scholar
  40. Mühlbachler, S., Farrugia, C.J., Raeder, J., Biernat, H.K., Torbert, R.B.: 2005, A statistical investigation of dayside magnetosphere erosion showing saturation of response. J. Geophys. Res. 110, A11207. doi: 10.1029/2005JA011177. ADSCrossRefGoogle Scholar
  41. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., et al.: 1995, SWE, A comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55. ADSCrossRefGoogle Scholar
  42. Osherovich, V.A., Fainberg, J., Stone, R.G.: 1999, Solar wind quasi-invariant as a new index of solar activity. Geophys. Res. Lett. 26, 2597. doi: 10.1029/1999GL90058. ADSCrossRefGoogle Scholar
  43. Rème, H., Aoustin, C., Bosqued, J.M., Dandouras, I., Lavraud, B., Sauvaud, J.A., Barthe, A., et al.: 2001, First multi-spacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys. 19, 1303. ADSCrossRefGoogle Scholar
  44. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. ADSCrossRefGoogle Scholar
  45. Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L. Jr., Dittmer, P.H., Gustafson, E.K.: 1977, The mean magnetic field of the Sun: Observations at Stanford. Solar Phys. 54, 353. ADSCrossRefGoogle Scholar
  46. Shue, J.-H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenker, G., Vaisberg, O.L., et al.: 1998, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103, 17 691. ADSCrossRefGoogle Scholar
  47. Sibeck, D.J., Lopez, R.E., Roelof, E.C.: 1991, Solar wind control of the magnetopause shape, location and motion. J. Geophys. Res. 96, 5489. ADSCrossRefGoogle Scholar
  48. Siscoe, G.L., Erickson, E.M., Sonnerup, B.U.Ö., Maynard, N.C., Schoendorf, J.A., Siebert, K.D., Weimer, D.R., White, W.W., Wilson, G.R.: 2002, Hill model of transpolar potential saturation: Comparisons with MHD simulations. J. Geophys. Res. 107, 1075. doi: 10.1029/2001JA000109. CrossRefGoogle Scholar
  49. Slavin, J.A., Holzer, R.E.: 1981, Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape. J. Geophys. Res. 86, 11,401. doi: 10.1029/JA086iA13. ADSCrossRefGoogle Scholar
  50. Sonnerup, B.U.Ö.: 1974, Magnetopause reconnection rate. J. Geophys. Res. 79, 1546. ADSCrossRefGoogle Scholar
  51. Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity, long-duration, continuous AE activity (HILDCAAS): Interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405. ADSCrossRefGoogle Scholar
  52. Wang, Y.-M.: 2009, Coronal holes and open magnetic flux. Space Sci. Rev. 144, 383. ADSCrossRefGoogle Scholar
  53. Wang, Y.-M., Robbrecht, E., Rouillard, A.P., Sheeley, N.R. Jr., Thernisien, A.F.R.: 2010, Formation and evolution of coronal holes following the emergence of active regions. Astrophys. J. 715, 39. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. J. Farrugia
    • 1
    Email author
  • B. Harris
    • 1
  • M. Leitner
    • 1
    • 2
  • C. Möstl
    • 3
    • 4
    • 8
  • A. B. Galvin
    • 1
  • K. D. C. Simunac
    • 1
  • R. B. Torbert
    • 1
  • M. B. Temmer
    • 3
    • 4
  • A. M. Veronig
    • 3
  • N. V. Erkaev
    • 5
    • 6
  • A. Szabo
    • 7
  • K. W. Ogilvie
    • 7
  • J. G. Luhmann
    • 8
  • V. A. Osherovich
    • 7
  1. 1.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  2. 2.Institute for Astro- and Particle PhysicsUniversity of InnsbruckInnsbruckAustria
  3. 3.Kanzelhöhe Observatory – IGAM, Institute of PhysicsUniversity of GrazGrazAustria
  4. 4.Space Research InstituteAustrian Academy of SciencesGrazAustria
  5. 5.Institute for Computational ModelingRussian Academy of SciencesKrasnoyarskRussia
  6. 6.Siberian Federal UniversityKrasnoyarskRussia
  7. 7.NASA/Goddard Space Flight CenterGreenbeltUSA
  8. 8.Space Sciences LaboratoryBerkeleyUSA

Personalised recommendations