Solar Physics

, Volume 285, Issue 1–2, pp 391–410 | Cite as

Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study

  • P. Corona-RomeroEmail author
  • J. A. Gonzalez-Esparza
  • E. Aguilar-Rodriguez


Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.


Coronal mass ejections, interplanetary Coronal mass ejections, theory Radio bursts, type II 



P. Corona-Romero thanks CONACyT for the doctoral grant. J.A. Gonzalez-Esparza thanks for partial funding by projects DGAPA-PAPIIT (IN105310) and CONACyT (152471). E. Aguilar-Rodriguez thanks DGAPA-PAPIIT project (grant IN109112) and CONACyT project (grant 101625). The authors want to thank the referee, whose comments helped to significantly improve the presentation of this work.


  1. Aschwanden, M.J., Nitta, N.V., Wuelser, J.-P., Lemen, J.R., Sandman, A., Vourlidas, A., Colaninno, R.C.: 2009, First measurements of the mass of coronal mass ejections from the EUV dimming observed with STEREO EUVI A+B spacecraft. Astrophys. J. 706, 376 – 392. doi: 10.1088/0004-637X/706/1/376. ADSCrossRefGoogle Scholar
  2. Bisi, M.M., Breen, A.R., Jackson, B.V., Fallows, R.A., Walsh, A.P., Mikić, Z., Riley, P., Owen, C.J., Gonzalez-Esparza, A., Aguilar-Rodriguez, E., Morgan, H., Jensen, E.A., Wood, A.G., Owens, M.J., Tokumaru, M., Manoharan, P.K., Chashei, I.V., Giunta, A.S., Linker, J.A., Shishov, V.I., Tyul’Bashev, S.A., Agalya, G., Glubokova, S.K., Hamilton, M.S., Fujiki, K., Hick, P.P., Clover, J.M., Pintér, B.: 2010, From the Sun to the Earth: The 13 May 2005 coronal mass ejection. Solar Phys. 265, 49 – 127. doi: 10.1007/s11207-010-9602-8. ADSCrossRefGoogle Scholar
  3. Borgazzi, A., Lara, A., Echer, E., Alves, M.V.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885 – 889. doi: 10.1051/0004-6361/200811171. ADSzbMATHCrossRefGoogle Scholar
  4. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24. doi: 10.1007/s005850050575. ADSCrossRefGoogle Scholar
  5. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231 – 263. doi: 10.1007/BF00751331. ADSCrossRefGoogle Scholar
  6. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684. doi: 10.1029/JA086iA08p06673. ADSCrossRefGoogle Scholar
  7. Cane, H.V., Stone, R.G.: 1984, Type II solar radio bursts, interplanetary shocks, and energetic particle events. Astrophys. J. 282, 339 – 344. doi: 10.1086/162207. ADSCrossRefGoogle Scholar
  8. Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869 – 9874. doi: 10.1029/JA092iA09p09869. ADSCrossRefGoogle Scholar
  9. Cantó, J., Raga, A.C., D’Alessio, P.: 2000, Analytic solutions to the problem of jets with time-dependent injection velocities. Mon. Not. Roy. Astron. Soc. 313, 656 – 662. doi: 10.1046/j.1365-8711.2000.03244.x. ADSCrossRefGoogle Scholar
  10. Cantó, J., González, R.F., Raga, A.C., de Gouveia Dal Pino, E.M., Lara, A., González-Esparza, J.A.: 2005, The dynamics of velocity fluctuations in the solar wind – I. Coronal mass ejections. Mon. Not. Roy. Astron. Soc. 357, 572 – 578. doi: 10.1111/j.1365-2966.2005.08670.x. ADSCrossRefGoogle Scholar
  11. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149. doi: 10.1023/B:SOLA.0000033366.10725.a2. ADSCrossRefGoogle Scholar
  12. Cavaliere, A., Messina, A.: 1976, Propagation of blast waves. Astrophys. J. 209, 424 – 428. doi: 10.1086/154736. ADSCrossRefGoogle Scholar
  13. Chen, J.: 2001, Physics of coronal mass ejections: A new paradigm of solar eruptions. Space Sci. Rev. 95, 165 – 190. ADSCrossRefGoogle Scholar
  14. Chen, J., Kunkel, V.: 2010, Temporal and physical connection between coronal mass ejections and flares. Astrophys. J. 717, 1105 – 1122. doi: 10.1088/0004-637X/717/2/1105. ADSCrossRefGoogle Scholar
  15. Cho, K.-S., Moon, Y.-J., Dryer, M., Fry, C.D., Park, Y.-D., Kim, K.-S.: 2003, A statistical comparison of interplanetary shock and CME propagation models. J. Geophys. Res. 108, 1445. doi: 10.1029/2003JA010029. CrossRefGoogle Scholar
  16. Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852 – 858. doi: 10.1088/0004-637X/698/1/852. ADSCrossRefGoogle Scholar
  17. Corona-Romero, P., Gonzalez-Esparza, J.A.: 2011, Numeric and analytic study of interplanetary coronal mass ejection and shock evolution: Driving, decoupling, and decaying. J. Geophys. Res. 116, 5104. doi: 10.1029/2010JA016008. CrossRefGoogle Scholar
  18. Dryer, M.: 1974, Interplanetary shock waves generated by solar flares. Space Sci. Rev. 15, 403 – 468. doi: 10.1007/BF00178215. ADSCrossRefGoogle Scholar
  19. Farris, M.H., Russell, C.T.: 1994, Determining the standoff distance of the bow shock: Mach number dependence and use of models. J. Geophys. Res. 99, 17681. doi: 10.1029/94JA01020. ADSCrossRefGoogle Scholar
  20. Feng, H.Q., Wu, D.J., Chao, J.K., Lee, L.C., Lyu, L.H.: 2010, Are all leading shocks driven by magnetic clouds? J. Geophys. Res. 115, 4107. doi: 10.1029/2009JA014875. CrossRefGoogle Scholar
  21. Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251 – 302. doi: 10.1007/s11214-006-9019-8. ADSCrossRefGoogle Scholar
  22. Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the Inner Heliosphere: Origin, evolution and propagation effects. Report of Working Group G. Space Sci. Rev. 123, 383 – 416. doi: 10.1007/s11214-006-9022-0. ADSCrossRefGoogle Scholar
  23. González, R.F., Cantó, J.: 2002, Radio-continuum emission from shocked stellar winds in low-mass stars. Astrophys. J. 580, 459 – 467. doi: 10.1086/343037. ADSCrossRefGoogle Scholar
  24. González, R.F., Montes, G., Cantó, J., Loinard, L.: 2006, Predicted radio-continuum emission from the little Homunculus of the η Carinae nebula. Mon. Not. Roy. Astron. Soc. 373, 391 – 396. doi: 10.1111/j.1365-2966.2006.11055.x. ADSCrossRefGoogle Scholar
  25. Gonzalez-Esparza, A., Aguilar-Rodriguez, E.: 2009, Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions. Ann. Geophys. 27, 3957 – 3966. doi: 10.5194/angeo-27-3957-2009. ADSCrossRefGoogle Scholar
  26. González-Esparza, J.A., Jeyakumar, S.: 2007, Propagation and interaction of interplanetary transient disturbances. Numerical simulations. Adv. Space Res. 40, 1815 – 1820. doi: 10.1016/j.asr.2007.06.021. ADSCrossRefGoogle Scholar
  27. González-Esparza, J.A., Lara, A., Pérez-Tijerina, E., Santillán, A., Gopalswamy, N.: 2003a, A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium. J. Geophys. Res. 108, 1039. doi: 10.1029/2001JA009186. CrossRefGoogle Scholar
  28. González-Esparza, J.A., Lara, A., Santillán, A., Gopalswamy, N.: 2003b, A numerical study on the evolution of CMEs and shocks in the interplanetary medium. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, Am. Inst. Phys. Conf. Ser. 679, 206 – 209. doi: 10.1063/1.1618578. Google Scholar
  29. González-Esparza, J.A., Cantó, J., González, R.F., Lara, A., Raga, A.C.: 2003c, Propagation of CMEs in the interplanetary medium: Numerical and analytical results. Adv. Space Res. 32, 513 – 518. doi: 10.1016/S0273-1177(03)00334-X. ADSCrossRefGoogle Scholar
  30. Gopalswamy, N., Kaiser, M.L., Lepping, R.P., Kahler, S.W., Ogilvie, K., Berdichevsky, D., Kondo, T., Isobe, T., Akioka, M.: 1998, Origin of coronal and interplanetary shocks – A new look with WIND spacecraft data. J. Geophys. Res. 103, 307. doi: 10.1029/97JA02634. ADSCrossRefGoogle Scholar
  31. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148. doi: 10.1029/1999GL003639. ADSCrossRefGoogle Scholar
  32. Gopalswamy, N., Lara, A., Manoharan, P.K., Howard, R.A.: 2005, An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289 – 2294. doi: 10.1016/j.asr.2004.07.014. ADSCrossRefGoogle Scholar
  33. Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033 – 3047. doi: 10.5194/angeo-26-3033-2008. ADSCrossRefGoogle Scholar
  34. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295 – 313. doi: 10.1007/s11038-008-9282-7. ADSCrossRefGoogle Scholar
  35. Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937 – 18950. doi: 10.1029/93JA01896. ADSCrossRefGoogle Scholar
  36. Harrison, R.A., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Davies, J.A., Howard, R.A., Moses, D.J., Socker, D.G., Newmark, J.S., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P., Webb, D.F., Simnett, G.M.: 2008, First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun Earth line. Solar Phys. 247, 171 – 193. doi: 10.1007/s11207-007-9083-6. ADSCrossRefGoogle Scholar
  37. Kim, K.-H., Moon, Y.-J., Cho, K.-S.: 2007, Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model. J. Geophys. Res. 112, 5104. doi: 10.1029/2006JA011904. CrossRefGoogle Scholar
  38. Knock, S.A., Cairns, I.H.: 2005, Type II radio emission predictions: Sources of coronal and interplanetary spectral structure. J. Geophys. Res. 110. Google Scholar
  39. Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp. 257, 287 – 290. doi: 10.1017/S1743921309029421. Google Scholar
  40. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82 – L87. doi: 10.1088/2041-8205/710/1/L82. ADSCrossRefGoogle Scholar
  41. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi: 10.1088/0004-637X/722/2/1762. ADSCrossRefGoogle Scholar
  42. Maloney, S.A., Gallagher, P.T.: 2011, STEREO direct imaging of a coronal mass ejection-driven shock to 0.5 AU. Astrophys. J. Lett. 736, L5. doi: 10.1088/2041-8205/736/1/L5. ADSCrossRefGoogle Scholar
  43. Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the Inner Heliosphere: A study using white-light and scintillation images. Solar Phys. 235, 345 – 368. doi: 10.1007/s11207-006-0100-y. ADSCrossRefGoogle Scholar
  44. Manoharan, P.K.: 2010, Ooty interplanetary scintillation – Remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137 – 157. doi: 10.1007/s11207-010-9593-5. ADSCrossRefGoogle Scholar
  45. Manoharan, P.K., Tokumaru, M., Pick, M., Subramanian, P., Ipavich, F.M., Schenk, K., Kaiser, M.L., Lepping, R.P., Vourlidas, A.: 2001, Coronal mass ejection of 2000 July 14 flare event: Imaging from near-Sun to Earth environment. Astrophys. J. 559, 1180 – 1189. doi: 10.1086/322332. ADSCrossRefGoogle Scholar
  46. Nakajima, H., Kawashima, S., Shinohara, N., Shiomi, Y., Enome, S., Rieger, E.: 1990, A high-speed shock wave in the impulsive phase of 1984 April 24 flare. Astrophys. J. Suppl. Ser. 73, 177 – 183. doi: 10.1086/191449. ADSCrossRefGoogle Scholar
  47. Ontiveros, V., Gonzalez-Esparza, J.A.: 2010, Geomagnetic storms caused by shocks and ICMEs. J. Geophys. Res. 115, 10244. doi: 10.1029/2010JA015471. CrossRefGoogle Scholar
  48. Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 – 275. doi: 10.1088/0004-637X/693/1/267. ADSCrossRefGoogle Scholar
  49. Petrinec, S.M.: 2002, The location of the Earth’s bow shock. Planet. Space Sci. 50, 541 – 547. doi: 10.1016/S0032-0633(02)00033-8. ADSCrossRefGoogle Scholar
  50. Petrinec, S.M., Russell, C.T.: 1997, Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles. Space Sci. Rev. 79, 757 – 791. doi: 10.1023/A:1004938724300. ADSCrossRefGoogle Scholar
  51. Pinter, S., Dryer, M.: 1990, Conversion of piston-driven shocks from powerful solar flares to blast waves in the solar wind. Bull. Astron. Inst. Czechoslov. 41, 137 – 148. ADSGoogle Scholar
  52. Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J.L., Manoharan, P.K., Elliott, H.A.: 2007, CME propagation characteristics from radio observations. Solar Phys. 244, 167 – 188. doi: 10.1007/s11207-007-9006-6. ADSCrossRefGoogle Scholar
  53. Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369 – 1385. doi: 10.1086/518683. ADSCrossRefGoogle Scholar
  54. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6. ADSCrossRefGoogle Scholar
  55. Smart, D.F., Shea, M.A.: 1985, A simplified model for timing the arrival of solar flare-initiated shocks. J. Geophys. Res. 90, 183 – 190. doi: 10.1029/JA090iA01p00183. ADSCrossRefGoogle Scholar
  56. Tappin, S.J.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248. doi: 10.1007/s11207-006-2065-2. ADSCrossRefGoogle Scholar
  57. Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95 – L98. doi: 10.1086/527414. ADSCrossRefGoogle Scholar
  58. Vourlidas, A., Ontiveros, V.: 2009, A review of coronagraphic observations of shocks driven by coronal mass ejections. In: Ao, X., Burrows, G.Z.R. (eds.) American Institute of Physics Conference Series 1183, 139 – 146. doi: 10.1063/1.3266770. Google Scholar
  59. Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456 – 467. doi: 10.1086/308747. ADSCrossRefGoogle Scholar
  60. Vršnak, B.: 2006, Forces governing coronal mass ejections. Adv. Space Res. 38, 431 – 440. doi: 10.1016/j.asr.2005.03.090. ADSCrossRefGoogle Scholar
  61. Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089 – 3101. doi: 10.5194/angeo-26-3089-2008. ADSCrossRefGoogle Scholar
  62. Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, 1019. doi: 10.1029/2001JA000120. CrossRefGoogle Scholar
  63. Vršnak, B., Ruzdjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331 – 351. doi: 10.1007/BF00795667. ADSGoogle Scholar
  64. Webb, D.F., Gopalswamy, N.: 2006, Coronal mass ejections and space weather. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Proceedings of the ILWS Workshop, 71. Google Scholar
  65. Webb, D.F., Biesecker, D., Howard, T.A., Luhmann, J.G., Li, Y., Galvin, A., Howard, R.A., Jackson, B.V.: 2009a, CMEs in the heliosphere observed with combined imaging and in-situ data from LASCO, Stereo and SMEI. In: AAS/Solar Physics Division Meeting 40, #21.02. Google Scholar
  66. Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Odstrcil, D., Jackson, B.V., Bisi, M.M., Harrison, R.A., Morrill, J.S., Howard, R.A., Johnston, J.C.: 2009b, Study of CME propagation in the Inner Heliosphere: SOHO LASCO, SMEI and STEREO HI observations of the January 2007 events. Solar Phys. 256, 239 – 267. doi: 10.1007/s11207-009-9351-8. ADSCrossRefGoogle Scholar
  67. Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100 – 1109. doi: 10.1086/506903. ADSCrossRefGoogle Scholar
  68. Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420 – 432. doi: 10.1086/381725. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. Corona-Romero
    • 1
    • 2
    Email author
  • J. A. Gonzalez-Esparza
    • 1
  • E. Aguilar-Rodriguez
    • 1
  1. 1.MEXART, Instituto de Geofisica, Unidad MichoacanUniversidad Nacional Autonoma de MexicoMoreliaMexico
  2. 2.Posgrado en Ciencias de la TierraUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations