Advertisement

Solar Physics

, Volume 281, Issue 2, pp 707–728 | Cite as

Study of an Extended EUV Filament Using SoHO/SUMER Observations of the Hydrogen Lyman Lines

II. Lyman α Line Observed During a Multi-wavelength Campaign
  • P. SchwartzEmail author
  • B. Schmieder
  • P. Heinzel
  • P. Kotrč
Article

Abstract

A filament and its channel close to the solar disk were observed in the complete hydrogen Lyman spectrum, and in several EUV lines by the SUMER (Solar Ultraviolet Measurement of Emitted Radiation) and CDS (Coronal Diagnostic Spectrometer) spectrographs on the SoHO satellite, and in Hα by ground-based telescopes during a multi-instrument campaign in May 2005. It was a good opportunity to get an overview of the volume and the density of the cold plasma in the filament channel; these are essential parameters for coronal mass ejections. We found that the width of the filament depends on the wavelength in which the filament is observed (around 15 arcsec in Hα, 30 arcsec in Lα, and 60 arcsec in EUV). In Lα the filament is wider than in Hα because cool plasma, not visible in Hα, is optically thick at the Lα line center, and its presence blocks the coronal emission. We have derived physical plasma properties of this filament fitting the Lyman spectra and Hα profiles by using a 1D isobaric NLTE model. The vertical temperature profile of the filament slab is flat (T≈7000 K) with an increase to ≈ 20 000 K at the top and the bottom of the slab. From an analysis of the Lα and Hα source functions we have concluded that these lines are formed over the whole filament slab. We have estimated the geometrical filling factor in the filament channel. Its low value indicates the presence of multi-threads.

Keywords

Prominences, models Prominences, quiescent Spectral line, intensity and diagnostics Spectrum, ultraviolet Spectrum, visible 

Notes

Acknowledgements

This work was supported by institutional project AV0Z10030501 and by grants P209/10/1680 and P209/10/1706 of the Czech Science Foundation and by the Slovak Grant Agency project VEGA 2/0108/12. The observations of SoHO/CDS, SoHO/SUMER and HSFA2 were made within the framework of the 15th coordinated MEDOC observing campaign. The SUMER data have been reduced with the intensity calibration procedures developed at MPS in Lindau, Germany and wavelength calibration was made using a procedure written by M. Carlsson. SoHO is a space mission of international cooperation between ESA and NASA. We are thankful to Dr. V. Yurchyshin for providing us with reduced BBSO Hα filtergrams. The authors are deeply indebted to anonymous referee for very useful comments and suggestions. We thank deeply Dr. George Simnett who have helped us to revise the English language. We acknowledge support from the International Space Science Institute to the International Team 174 ‘Solar Prominence Formation and Equilibrium’ , where the results of this work were under constructive discussions.

References

  1. Anzer, U., Heinzel, P.: 2005, Astrophys. J. 622, 714. doi: 10.1086/427817. ADSCrossRefGoogle Scholar
  2. Aulanier, G., Schmieder, B.: 2002, Astron. Astrophys. 386, 1106. doi: 10.1051/0004-6361:20020179. ADSCrossRefGoogle Scholar
  3. Berlicki, A., Gunár, S., Heinzel, P., Schmieder, B., Schwartz, P.: 2011 Astron. Astrophys. 530 A143. doi: 10.1051/0004-6361/201015896. ADSCrossRefGoogle Scholar
  4. Carlsson, M., Judge, P.G., Wilhelm, K.: 1997, Astrophys. J. Lett. 486, L63. doi: 10.1086/310836. ADSCrossRefGoogle Scholar
  5. David, K.: 1961, Z. Astrophys. 53, 37. ADSGoogle Scholar
  6. Fludra, A., Del Zanna, G., Alexander, D., Bromage, B.J.I.: 1999, J. Geophys. Res. 104, 9709. doi: 10.1029/1998JA900033. ADSCrossRefGoogle Scholar
  7. Fontenla, J.M., Rovira, M.: 1985, Solar Phys. 96, 53. doi: 10.1007/BF00239794. ADSCrossRefGoogle Scholar
  8. Gunár, S., Heinzel, P., Anzer, U.: 2007, Astron. Astrophys. 463, 737. doi: 10.1051/0004-6361:20066142. ADSCrossRefGoogle Scholar
  9. Hansteen, V.H., Betta, R., Carlsson, M.: 2000, Astron. Astrophys. 360, 742. ADSGoogle Scholar
  10. Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A. M., Cutler, R. M., Fludra, A., et al.: 1995, Solar Phys. 162, 233. doi: 10.1007/BF00733431. ADSCrossRefGoogle Scholar
  11. Heasley, J. N., Mihalas, D.: 1976, Astrophys. J. 205, 273. ADSCrossRefGoogle Scholar
  12. Heinzel, P., Anzer, U.: 2006, Astrophys. J. Lett. 643, L65. doi: 10.1086/504980 ADSCrossRefGoogle Scholar
  13. Heinzel, P., Anzer, U., Schmieder, B.: 2003, Solar Phys. 216, 159. doi: 10.1023/A:1026130028966. ADSCrossRefGoogle Scholar
  14. Heinzel, P., Schmieder, B., Tziotziou, K.: 2001, Astrophys. J. Lett. 561, L223. doi: 10.1086/324755. ADSCrossRefGoogle Scholar
  15. Heinzel, P., Schmieder, B., Vial, J.: 1997, In: Wilson, A. (ed.) Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity SP-404, ESA, Noordwijk, 427. Google Scholar
  16. Heinzel, P., Anzer, U., Schmieder, B., Schwartz, P.: 2003, In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment SP-535, ESA, Noordwijk, 447. Google Scholar
  17. Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., et al.: 2008, Astrophys. J. 686, 1383. doi: 10.1086/591018. ADSCrossRefGoogle Scholar
  18. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., et al.: 2007, Solar Phys. 243, 3. doi: 10.1007/s11207-007-9014-6. ADSCrossRefGoogle Scholar
  19. Kotrč, P.: 2009, Cent. Eur. Astrophys. Bull. 33, 327. ADSGoogle Scholar
  20. Labrosse, N., Heinzel, P., Vial, J.C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Space Sci. Rev. 151, 243. doi: 10.1007/s11214-010-9630-6. ADSCrossRefGoogle Scholar
  21. Paletou, F.: 1995, Astron. Astrophys. 302, 587. ADSGoogle Scholar
  22. Schmieder, B., Tziotziou, K., Heinzel, P.: 2003, Astron. Astrophys. 401, 361. doi: 10.1051/0004-6361:20030126. ADSCrossRefGoogle Scholar
  23. Schmieder, B., Heinzel, P., Kucera, T., Vial, J.: 1998, Solar Phys. 181, 309. ADSCrossRefGoogle Scholar
  24. Schwartz, P., Heinzel, P., Anzer, U., Schmieder, B.: 2004, Astron. Astrophys. 421, 323. doi: 10.1051/0004-6361:20034199. ADSCrossRefGoogle Scholar
  25. Schwartz, P., Heinzel, P., Schmieder, B., Anzer, U.: 2006, Astron. Astrophys. 459, 651 (Paper I). doi: 10.1051/0004-6361:20065619. ADSCrossRefGoogle Scholar
  26. van Griethuysen, I.G., Houtgast, J.: 1959, Bull. Astron. Inst. Neth. 14, 279. ADSGoogle Scholar
  27. Vial, J.C., Boutry, C., Wilhelm, K.: 2005, In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.), The Dynamic Sun: Challenges for Theory and Observations SP-600, ESA, Noordwijk, 102.1 (in CDROM). Google Scholar
  28. Vourlidas, A., Sanchez Andrade-Nuño, B., Landi, E., Patsourakos, S., Teriaca, L., Schühle, U., Korendyke, C.M., Nestoras, I.: 2010, Solar Phys. 261, 53. doi: 10.1007/s11207-009-9475-x. ADSCrossRefGoogle Scholar
  29. Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., et al.: 1995, Solar Phys. 162, 189. doi: 10.1007/BF00733430. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. Schwartz
    • 1
    • 2
    • 3
    Email author
  • B. Schmieder
    • 3
  • P. Heinzel
    • 1
    • 3
  • P. Kotrč
    • 1
  1. 1.Astronomical InstituteAcademy of Sciences of the Czech RepublicOndřejovCzech Republic
  2. 2.Astronomical Institute of Slovak Academy of SciencesTatranská LomnicaSlovak Republic
  3. 3.Observatoire de ParisLESIAMeudonFrance

Personalised recommendations