Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Emission of Type II Radio Bursts – Single-Beam Versus Two-Beam Scenario

  • 242 Accesses

  • 16 Citations


The foreshock region of a CME shock front, where shock accelerated electrons form a beam population in the otherwise quiescent plasma is generally assumed to be the source region of type II radio bursts. Nonlinear wave interaction of electrostatic waves excited by the beamed electrons are the prime candidates for the radio waves’ emission.

To address the question whether a single, or two counterpropagating beam populations are a requirement for this process, we have conducted 2.5D particle-in-cell simulations using the fully relativistic ACRONYM code.

Results show indications of three-wave interaction leading to electromagnetic emission at the fundamental and harmonic frequency for the two-beam case. For the single-beam case, no such signatures were detectable.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. Aurass, H., Vršnak, B., Mann, G.: 2002, Shock-excited radio burst from reconnection outflow jet? Astron. Astrophys. 384, 273 – 281. doi: 10.1051/0004-6361:20011735 .

  2. Cane, H.V., Sheeley, J., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92(A9), 9869 – 9874. doi: 10.1029/JA092iA09p09869 .

  3. Forbes, T., Linker, J., Chen, J., Cid, C., Kóta, J., Lee, M., Mann, G., Mikic, Z., Potgieter, M., Schmidt, J., Siscoe, G., Vainio, R., Antiochos, S., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251 – 302. doi: 10.1007/s11214-006-9019-8 .

  4. Holman, G.D., Pesses, M.E.: 1983, Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837 – 843. doi: 10.1086/160918 .

  5. Karlický, M., Vandas, M.: 2007, Shock drift electron acceleration and generation of waves. Planet. Space Sci. 55, 2336 – 2339. doi: 10.1016/j.pss.2007.05.015 .

  6. Kilian, P., Burkart, T., Spanier, F.: 2012, The influence of the mass ratio on particle acceleration by the filamentation instability. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’11, Springer, Berlin, 5 – 13. ISBN 978-3-642-23869-7. doi: 10.1007/978-3-642-23869-7 .

  7. Knock, S.A., Cairns, I.H., Robinson, P.A., Kuncic, Z.: 2001, Theory of type II radio emission from the foreshock of an interplanetary shock. J. Geophys. Res. 106, 25041 – 25052. doi: 10.1029/2001JA000053 .

  8. Mann, G.: 1995, Theory and observations of coronal shock waves. In: Benz, A., Krüger, A. (eds.) Coronal Magnetic Energy Releases, Lecture Notes in Physics 444, Springer, Berlin, 183 – 200. doi: 10.1007/3-540-59109-5_50 . ISBN 978-3-540-59109-2.

  9. Melrose, D.B.: 1986, Instabilities in Space and Laboratory Plasmas, Cambridge University Press, Cambridge.

  10. Nelson, G.J., Melrose, D.B.: 1985, 7. Type II Bursts, Cambridge University Press, Cambridge, 333 – 359.

  11. Pomoell, J., Vainio, R., Kissmann, R.: 2008, MHD modeling of coronal large-amplitude waves related to CME lift-off. Solar Phys. 253, 249 – 261. doi: 10.1007/s11207-008-9186-8 .

  12. Pulupa, M., Bale, S.D.: 2008, Structure on interplanetary shock fronts: Type II radio burst source regions. Astrophys. J. 676, 1330 – 1337.

  13. Schmidt, J.M., Gopalswamy, N.: 2008, Synthetic radio maps of CME-driven shocks below 4 solar radii heliocentric distance. J. Geophys. Res. 113, A08104.

  14. Spanier, F., Wisniewski, M.: 2011, Simulation of charged particle diffusion in MHD plasmas. Astrophys. Space Sci. Trans. 7, 21 – 27. doi: 10.5194/astra-7-21-2011 .

  15. Tsiklauri, D.: 2011, An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts. Phys. Plasmas 18(5), 052903. doi: 10.1063/1.3590928 .

  16. Wild, J., McCready, L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. Aust. J. Sci. Res., Ser. A 3(3), 387 – 398.

  17. Willes, A.J., Cairns, I.H.: 2000, Generalized Langmuir waves in magnetized kinetic plasmas. Phys. Plasmas 7, 3167 – 3180. doi: 10.1063/1.874180 .

  18. Zlotnik, E.Y., Klassen, A., Klein, K.-L., Aurass, H., Mann, G.: 1998, Third harmonic plasma emission in solar type II radio bursts. Astron. Astrophys. 331, 1087 – 1098.

Download references


The authors would like the Jülich Supercomputing Centre and the CSC Helsinki for their grants of computing time. UG and PK acknowledge financial support by the Elite Network of Bavaria. FS acknowledges support by the Deutsche Forschungsgemeinschaft, Grand SP1124-1. This work has been supported by the European Framework Programme 7 Grant Agreement SEPServer – 262773

Author information

Correspondence to U. Ganse.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ganse, U., Kilian, P., Vainio, R. et al. Emission of Type II Radio Bursts – Single-Beam Versus Two-Beam Scenario. Sol Phys 280, 551–560 (2012). https://doi.org/10.1007/s11207-012-0077-7

Download citation


  • Radio bursts
  • Type II
  • Radio bursts, theory
  • Plasma physics