Solar Physics

, Volume 281, Issue 1, pp 237–262 | Cite as

Magnetic Topology of Active Regions and Coronal Holes: Implications for Coronal Outflows and the Solar Wind

  • L. van Driel-GesztelyiEmail author
  • J. L. Culhane
  • D. Baker
  • P. Démoulin
  • C. H. Mandrini
  • M. L. DeRosa
  • A. P. Rouillard
  • A. Opitz
  • G. Stenborg
  • A. Vourlidas
  • D. H. Brooks


During 2 – 18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer.


Active regions Magnetic field Magnetic extrapolations Solar wind 

List of Acronyms


Advanced Composition Explorer


active region


coronal hole


EUV Imaging Spectrometer


first ionization potential


field of view


Heliospheric Current Sheet


Heliospheric Plasma Sheet


linear force-free field


potential-field source-surface


quasi-separatrix layer


rarefaction region


Stream Interaction Region


Solar-Terrestrial Relations Observatory


solar wind


X-ray Telescope



We thank the anonymous referee for constructive comments, which helped us in improving and clarifying the article. The research leading to these results has received funding from the European Commission’s Seventh Framework Programme under the grant agreement No. 284461 (eHEROES project). LvDG’s work was supported by the Hungarian Research grant OTKA K-081421. CHM acknowledges financial support from the Argentinean grants PICT 2007-1790, UBACyT 20020100100733 and PIP 2009-100766 (CONICET). CHM is a member of the Carrera del Investigador Científico (CONICET). PD and CHM thank ECOS-MINCyT for their cooperative science program A08U01. The work of DHB was performed under contract with the Naval Research Laboratory and was funded by the NASA Hinode program.

Supplementary material

(MOV 94.1 MB)

(MOV 93.1 MB) (2.2 mb)
(MOV 2.2 MB)
11207_2012_76_MOESM4_ESM.mpg (292.1 mb)
(MPG 292.1 MB)


  1. Antiochos, S.K., Mikic, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112. doi: 10.1088/0004-637X/731/2/112. ADSCrossRefGoogle Scholar
  2. Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961. doi: 10.1051/0004-6361:20053600. ADSCrossRefGoogle Scholar
  3. Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926. doi: 10.1088/0004-637X/705/1/926. ADSCrossRefGoogle Scholar
  4. Bradshaw, S.J., Aulanier, G., Del Zanna, G.: 2011, A reconnection-driven rarefaction wave model for coronal outflows. Astrophys. J. 743, 66. doi: 10.1088/0004-637X/743/1/66. ADSCrossRefGoogle Scholar
  5. Brooks, D.H., Warren, H.P.: 2011, Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727, L13. doi: 10.1088/2041-8205/727/1/L13. ADSCrossRefGoogle Scholar
  6. Bryans, P., Young, P.R., Doschek, G.A.: 2010, Multiple component outflows in an active region observed with the EUV Imaging Spectrometer on Hinode. Astrophys. J. 715, 1012. doi: 10.1088/0004-637X/715/2/1012. ADSCrossRefGoogle Scholar
  7. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV Imaging Spectrometer for Hinode. Solar Phys. 243, 19. doi: 10.1007/s01007- 007-0293-1. ADSCrossRefGoogle Scholar
  8. Démoulin, P., Hénoux, J.C., Mandrini, C.H.: 1994, Are magnetic null points important in solar flares? Astron. Astrophys. 285, 1023. ADSGoogle Scholar
  9. Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643. ADSGoogle Scholar
  10. Démoulin, P., Bagala, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305. ADSGoogle Scholar
  11. De Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M., Schrijver, C.J., Tarbell, T.D., Title, A.M., Shine, R.A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., Nagata, S.: 2007, A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan 59, S655. Google Scholar
  12. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, 1. doi: 10.1088/0004-637X/701/1/L1. ADSCrossRefGoogle Scholar
  13. Del Zanna, G.: 2003, Solar active regions: the footpoints of 1 MK loops. Astron. Astrophys. 406, L5. doi: 10.1051/0004-6361:20030818. ADSCrossRefGoogle Scholar
  14. Del Zanna, G.: 2008, Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, 49. doi: 10.1051/0004-6361:20079087. CrossRefGoogle Scholar
  15. Del Zanna, G., Aulanier, G., Klein, K., Török, T.: 2011, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137. doi: 10.1051/0004-6361/201015231. CrossRefGoogle Scholar
  16. Doschek, G.A., Mariska, J.T., Warren, H.P., Brown, C.M., Culhane, J.L., Hara, H., Watanabe, T., Young, P.R., Mason, H.E.: 2007, Nonthermal velocities in solar active regions observed with the Extreme-Ultraviolet Imaging Spectrometer on Hinode. Astrophys. J. Lett. 667, 109. doi: 10.1086/522087. ADSCrossRefGoogle Scholar
  17. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Flows and nonthermal velocities in solar active regions observed with the EUV Imaging Spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362. doi: 10.1086/591724. ADSCrossRefGoogle Scholar
  18. Elliott, H.A., McComas, D.J., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Gloeckler, G., Zurbuchen, T.H.: 2005, An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res. 110, A04103. doi: 10.1029/2004JA010794. CrossRefGoogle Scholar
  19. Feldman, U., Widing, K.G.: 2003, Elemental abundances in the solar upper atmosphere derived by spectroscopic means. Space Sci. Rev. 107, 665. doi: 10.1023/A:1026103726147. ADSCrossRefGoogle Scholar
  20. Foullon, C., Lavraud, B., Luhmann, J.G., Farrugia, C.J., Retino, A., Simunac, K.D., Wardle, N.C., Galvin, A.B., Kucharek, H., Owen, C.J., Popecki, M., Opitz, A., Sauvaud, J.-A.: 2011, Plasmoid releases in the heliospheric current sheet and associated coronal hole boundary layer evolution. Astrophys. J. 737, 16. doi: 10.1088/0004-637X/737/1/16. ADSCrossRefGoogle Scholar
  21. Geiss, J., Gloeckler, G., von Steiger, R.: 1995, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49 – 60. doi: 10.1007/BF00768753. ADSCrossRefGoogle Scholar
  22. Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497. doi: 10.1023/A:1005036131689. ADSCrossRefGoogle Scholar
  23. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode Mission. Solar Phys. 243, 63. doi: 10.1007/s11207-007-0182-1. ADSCrossRefGoogle Scholar
  24. Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A.: 2008, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678, 67. doi: 10.1086/588252. ADSCrossRefGoogle Scholar
  25. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, 147. doi: 10.1086/587485. ADSCrossRefGoogle Scholar
  26. Harra, L.K., Archontis, V., Pedram, E., Hood, A.W., Shelton, D.L., van Driel-Gesztelyi, L.: 2012, The creation of outflowing plasma in the corona at emerging flux regions: comparing observations and simulations. Solar Phys. 278, 47. doi: 10.1007/s11207-011-9855-x. ADSCrossRefGoogle Scholar
  27. Kahler, S.W., Jibben, P., DeLuca, E.E.: 2010, TRACE observations of changes in coronal hole boundaries. Solar Phys. 262, 135. doi: 10.1007/s11207-010-9517-4. ADSCrossRefGoogle Scholar
  28. Karachik, N.V., Pevtsov, A.A., Abramenko, V.I.: 2010, Formation of coronal holes on the ashes of active regions. Astrophys. J. 714, 1672. doi: 10.1088/0004-637X/714/2/1672. ADSCrossRefGoogle Scholar
  29. Ko, Y.-K., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275. doi: 10.1086/505021. ADSCrossRefGoogle Scholar
  30. Lau, Y.-T.: 1993, Magnetic nulls and topology in a class of solar flare models. Solar Phys. 148, 301. doi: 10.1007/BF00645092. ADSCrossRefGoogle Scholar
  31. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  32. Liewer, P.C., Neugebauer, M., Zurbuchen, T.: 2004, Characteristics of active-region sources of solar wind near solar maximum. Solar Phys. 223, 209. doi: 10.1007/s11207-004-1105-z. ADSCrossRefGoogle Scholar
  33. Luoni, M.L., Mandrini, C.H., Cristiani, G.D., Démoulin, P.: 2007, The magnetic field topology associated with two M flares. Adv. Space Res. 39, 1382. ADSCrossRefGoogle Scholar
  34. Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Cauzzi, G., Hofmann, A.: 1996, 3D magnetic reconnection at an X-ray bright point. Solar Phys. 238, 293. doi: 10.1007/s11207-006-0205-3. CrossRefGoogle Scholar
  35. Mandrini, C.H., Démoulin, P., Schmieder, B., DeLuca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 168, 115. doi: 10.1007/s11207-006-0205-3. ADSCrossRefGoogle Scholar
  36. Marsch, E., Wiegelmann, T., Xia, L.D.: 2004, Coronal plasma flows and magnetic fields in solar active regions. Combined observations from SOHO and NSO/Kitt Peak. Astron. Astrophys. 428, 629. doi: 10.1051/0004-6361:20041060. ADSCrossRefGoogle Scholar
  37. Marsch, E., Tian, H., Sun, J., Curdt, W., Wiegelmann, T.: 2008, Plasma flows guided by strong magnetic fields in the solar corona. Astrophys. J. 685, 1262. doi: 10.1086/591038. ADSCrossRefGoogle Scholar
  38. Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559. doi: 10.1088/0004-637X/700/1/559. ADSCrossRefGoogle Scholar
  39. Masson, S., Aulanier, G., Pariat, E., Klein, K.-L.: 2012, Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199. doi: 10.1007/s11207-011-9886-3. ADSCrossRefGoogle Scholar
  40. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.P., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563. doi: 10.1023/A:1005040232597. ADSCrossRefGoogle Scholar
  41. Murray, M.J., Baker, D., van Driel-Gesztelyi, L., Sun, J.: 2010, Outflows at the edges of an active region in a coronal hole: a signature of active region expansion? Solar Phys. 261, 253. doi: 10.1007/s11207-009-9484-9. ADSCrossRefGoogle Scholar
  42. Owocki, S.P., Holzer, T.E., Hundhausen, A.J.: 1983, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354. ADSCrossRefGoogle Scholar
  43. Rouillard, A.P., Davies, J.A., Lavraud, B., Forsyth, R.J., Savani, N.P., Bewsher, D., Brown, D.S., Sheeley, N.R., et al.: 2010a, Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. J. Geophys. Res. 115, 4103. doi: 10.1029/2009JA014471. CrossRefGoogle Scholar
  44. Rouillard, A.P., Lavraud, B., Davies, J.A., Savani, N.P., Burlaga, L.F., Forsyth, R.J., Sauvaud, J.-A., Opitz, A., et al.: 2010b, Intermittent release of transients in the slow solar wind: 2. In situ evidence. J. Geophys. Res. 115, 4104. doi: 10.1029/2009JA014472. CrossRefGoogle Scholar
  45. Rouillard, A.P., Sheeley, N.R. Jr., Cooper, T.J., Davies, J.A., Lavraud, B., Kilpua, E.K.J., Skoug, R.M., Steinberg, J.T., Szabo, A., Opitz, A., Sauvaud, J.-A.: 2011, The solar origin of small interplanetary transients. Astrophys. J. 734, 7. doi: 10.1088/0004-637X/734/1/7. ADSCrossRefGoogle Scholar
  46. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585. doi: 10.1126/science.1147292. ADSCrossRefGoogle Scholar
  47. Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. doi: 10.1023/A:1022908504100. ADSCrossRefGoogle Scholar
  48. Schrijver, C.J., Title, A.M.: 2001, On the formation of polar spots in Sun-like stars. Astrophys. J. 551, 1099. doi: 10.1086/320237. ADSCrossRefGoogle Scholar
  49. Schrijver, C.J., Title, A.M., Berger, T.E., Fletcher, L., Hurlburt, N.E., Nightingale, R.W., Shine, R.A., Tarbell, T.D., Wolfson, J., Golub, L., Bookbinder, J.A., Deluca, E.E., Mc-Mullen, R.A., Warren, H.P., Kankelborg, C.C., Handy, B.N., de Pontieu, B.: 1999, A new view of the solar outer atmosphere by the Transition Region and Coronal Explorer. Solar Phys. 187, 261. doi: 10.1023/A:1005194519642. ADSCrossRefGoogle Scholar
  50. Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., Hirayama, T., Uchida, Y., McAllister, A.H., Matsumoto, R., Tsuneta, S., Shimizu, T., Hara, H., Sakurai, T., Ichimoto, K., Nishino, Y., Ogawara, Y.: 1992, Observations of X-ray jets with the YOHKOH Soft X-ray Telescope. Publ. Astron. Soc. Japan 44, 173. ADSGoogle Scholar
  51. Smith, C.W., L’Heureux, J., Ness, N.F., Acuna, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. doi: 10.1023/A:1005092216668. ADSCrossRefGoogle Scholar
  52. Stenborg, G., Vourlidas, A., Howard, R.A.: 2008, A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. Astrophys. J. 674, 1201. doi: 10.1086/525556. ADSCrossRefGoogle Scholar
  53. Tian, H., McIntosh, S.W., De Pontieu, B.: 2011, The spectroscopic signature of quasi-periodic upflows in active region timeseries. Astrophys. J. Lett. 727, L37. doi: 10.1088/2041-8205/727/2/L37. ADSCrossRefGoogle Scholar
  54. Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164. doi: 10.1029/2001JA000278. CrossRefGoogle Scholar
  55. Ugarte-Urra, I., Warren, H.P.: 2011, Temporal variability of active region outflows. Astrophys. J. 730, 37. doi: 10.1088/0004-637X/730/1/37. ADSCrossRefGoogle Scholar
  56. von Steiger, R., Schweingruber, R.F., Wimmer, R., Geiss, J., Gloeckler, G.: 1995, Abundance variations in the solar wind. Adv. Space Res. 15, 3. CrossRefGoogle Scholar
  57. von Steiger, R., Schwadron, N.A., Fisk, L.A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R.F., Zurbuchen, T.H.: 2000, Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res. 105, 27217. doi: 10.1029/1999JA000358. ADSCrossRefGoogle Scholar
  58. von Steiger, R., Zurbuchen, T.H., Geiss, J., Gloeckler, G., Fisk, L.A., Schwadron, N.A.: 2001, The 3-D heliosphere from the Ulysses and ACE solar wind ion composition experiments. Space Sci. Rev. 97, 123. doi: 10.1023/A:1011886414964. ADSCrossRefGoogle Scholar
  59. Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys. J. 372, L45. doi: 10.1086/186020. ADSCrossRefGoogle Scholar
  60. Wang, Y.-M., Sheeley, N.R.J., Rich, N.B.: 2007, Coronal pseudostreamers. Astrophys. J. 658, 1340. doi: 10.1086/511416. ADSCrossRefGoogle Scholar
  61. Wang, Y.-M., Ko, Y.-K., Grappin, R.: 2009, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760. doi: 10.1088/0004-637X/691/1/760. ADSCrossRefGoogle Scholar
  62. Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G.: 2011, The temperature dependence of solar active region outflows. Astrophys. J. 727, 58. doi: 10.1088/0004-637X/727/1/58. ADSCrossRefGoogle Scholar
  63. Webb, D., Cremades, H., Sterling, A., Mandrini, C., Dasso, S., Gibson, S., Haber, D., Komm, R., Petrie, G., McIntosh, P., Welsch, B., Plunkett, S.: 2011, The global context of solar activity during the whole heliosphere interval campaign. Solar Phys. 274, 57. doi: 10.1007/s11207-011-9787-5. ADSCrossRefGoogle Scholar
  64. Winebarger, A.R., DeLuca, E.E., Golub, L.: 2001, Apparent flows above an active region observed with the transition region and coronal explorer. Astrophys. J. Lett. 553, L81. doi: 10.1086/320496. ADSCrossRefGoogle Scholar
  65. Winebarger, A.R., Warren, H., van Ballegooijen, A., DeLuca, E.E., Golub, L.: 2002, Steady flows detected in extreme-ultraviolet loops. Astrophys. J. Lett. 567, L89. doi: 10.1086/339796. ADSCrossRefGoogle Scholar
  66. Young, P.R., Del Zanna, G., Mason, H.E., Dere, K.P., Li, E., Lini, M., Doschek, G.A., Brown, C.M., Culhane, L., Harra, L.K., Watanabe, T., Hara, H.: 2007, EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Japan 59, 857. ADSGoogle Scholar
  67. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, 14104. doi: 10.1029/2009GL039181. ADSCrossRefGoogle Scholar
  68. Zurbuchen, T.H., Fisk, L.A., Gloeckler, G., von Steiger, R.: 2002, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29, 1352. doi: 10.1029/2001GL013946. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. van Driel-Gesztelyi
    • 1
    • 2
    • 3
    Email author
  • J. L. Culhane
    • 1
    • 4
  • D. Baker
    • 1
  • P. Démoulin
    • 2
  • C. H. Mandrini
    • 5
    • 6
  • M. L. DeRosa
    • 7
  • A. P. Rouillard
    • 8
    • 9
  • A. Opitz
    • 8
    • 9
  • G. Stenborg
    • 10
  • A. Vourlidas
    • 11
  • D. H. Brooks
    • 10
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.Observatoire de Paris, LESIA, CNRS, UPMC Univ. Paris 06Univ. Paris-DiderotMeudonFrance
  3. 3.Konkoly ObservatoryHungarian Academy of SciencesBudapestHungary
  4. 4.International Space Science InstituteBernSwitzerland
  5. 5.Instituto de Astronomía y Física del EspacioCONICET-UBABuenos AiresArgentina
  6. 6.Facultad de Ciencias Exactas y NaturalesFCEN-UBABuenos AiresArgentina
  7. 7.Lockheed Martin Solar and Astrophysics LaboratoryPalo AltoUSA
  8. 8.Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse (UPS)ToulouseFrance
  9. 9.Centre National de la Recherche ScientifiqueUMR 5277ToulouseFrance
  10. 10.College of ScienceGeorge Mason UniversityFairfaxUSA
  11. 11.Space Science DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations