Solar Physics

, Volume 280, Issue 1, pp 223–236 | Cite as

Variation of the Schwabe Cycle Length During the Grand Solar Minimum in the 4th Century BC Deduced from Radiocarbon Content in Tree Rings

  • K. Nagaya
  • K. Kitazawa
  • F. Miyake
  • K. Masuda
  • Y. Muraki
  • T. Nakamura
  • H. Miyahara
  • H. Matsuzaki
Article

Abstract

Solar activity alternates between active and quiet phases with an average period of 11 years, and this is known as the Schwabe cycle. Additionally, solar activity occasionally falls into a prolonged quiet phase (grand solar minimum), as represented by the Maunder Minimum in the 17th century, when sunspots were almost absent for 70 years and the length of the Schwabe cycle increased to 14 years. To examine the consistency of the cycle length characteristics during the grand solar minima, the carbon-14 contents in single-year tree rings were measured using an accelerator mass spectrometer as an index of the solar variability during the grand solar minimum of the 4th century BC. The signal of the Schwabe cycle was detected with a statistical confidence level of higher than 95 % by wavelet analysis. This is the oldest evidence for the Schwabe cycle at the present time, and the cycle length is considered to have increased to approximately 16 years during the grand solar minimum of the 4th century BC. This result confirms the association between the increase of the Schwabe cycle length and the weakening of solar activity, and indicates the possible prolonged absence of sunspots in the 4th century BC as during the Maunder Minimum. Theoretical implications from solar dynamo theory are discussed in order to identify the trigger of prolonged sunspot absence. A possible association between the long-term solar variation around the 4th century BC and terrestrial cooling in this period is also discussed.

Keywords

Cosmic rays Galactic Solar cycle Observations 

Notes

Acknowledgements

This work was supported by the staff of the Center for Chronological Research, Nagoya University and the staff of the Micro Analysis Laboratory Tandem Accelerator, University of Tokyo. This work was partly supported by Grants-in-Aid for Scientific Research (B:22340144) by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The authors thank the anonymous referee for many useful comments and discussion.

References

  1. Babcock, H.D.: 1959, Astrophys. J. 130, 364. ADSCrossRefGoogle Scholar
  2. Babcock, H.W.: 1961, Astrophys. J. 133, 572. ADSCrossRefGoogle Scholar
  3. Barber, K.E., Langdon, P.G.: 2007, Quat. Sci. Rev. 26, 3318. ADSCrossRefGoogle Scholar
  4. Beer, J., Tobias, S., Weiss, N.: 1998, Solar Phys. 181, 237. ADSCrossRefGoogle Scholar
  5. Berggren, A.M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S.J., Abreu, J., Vinther, B.M.: 2009, Geophys. Res. Lett. 36(11), L11801. ADSCrossRefGoogle Scholar
  6. Berner, K.S., Koc, N., Divine, D., Godtliebsen, F., Moros, M.: 2008, Paleoceanography 23, 2. CrossRefGoogle Scholar
  7. Bronk Ramsey, C.: 2008, Quat. Sci. Rev. 27(1 – 2), 42. ADSCrossRefGoogle Scholar
  8. Bronk Ramsey, C., van der Plicht, J., Weninger, B.: 2001, Radiocarbon 43, 381. Google Scholar
  9. Charbonneau, P., Dikpati, M.: 2000, Astrophys. J. 543, 1027. ADSCrossRefGoogle Scholar
  10. Choudhuri, A.R., Karak, B.B.: 2009, Res. Astron. Astrophys. 9, 953. ADSCrossRefGoogle Scholar
  11. Desprat, S., Goni, M.F.S., Loutre, M.F.: 2003, Earth Planet. Sci. Lett. 213, 63. ADSCrossRefGoogle Scholar
  12. Dikpati, M., Charbonneau, P.: 1999, Astrophys. J. 518, 508. ADSCrossRefGoogle Scholar
  13. Eddy, J.A.: 1976, Science 192, 1189. ADSCrossRefGoogle Scholar
  14. Geel, B.V., Buurman, J., Waterbolk, H.T.: 1996, J. Quat. Sci. 11(6), 451. CrossRefGoogle Scholar
  15. Gil Garcia, M.J., Ruiz Zapata, M.B., Santisteban, J.I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C.J.: 2007, Veg. Hist. Archaeobot. 16, 241. CrossRefGoogle Scholar
  16. Godwin, H.: 1962, Nature 195, 984. ADSCrossRefGoogle Scholar
  17. Goslar, T.: 2003, PAGES News (Past Global Changes) 11(2 – 3), 12. Google Scholar
  18. Hale, G.E., Nicholson, S.B.: 1925, Astrophys. J. 62, 270. ADSCrossRefGoogle Scholar
  19. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, Astrophys. J. 49, 153. ADSCrossRefGoogle Scholar
  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357. ADSCrossRefGoogle Scholar
  21. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Astrophys. J. 589, 665. ADSCrossRefGoogle Scholar
  22. Hotta, H., Yokoyama, T.: 2010, Astrophys. J. 709, 1009. ADSCrossRefGoogle Scholar
  23. Hoyt, D.V., Schatten, K.H.: 1998, Solar Phys. 179, 189. ADSCrossRefGoogle Scholar
  24. Karak, B.B.: 2010, Astrophys. J. 724, 1021. ADSCrossRefGoogle Scholar
  25. Kota, J., Jokipii, J.R.: 1983, Astrophys. J. 265, 573. ADSCrossRefGoogle Scholar
  26. Leighton, R.B.: 1964, Astrophys. J. 140, 1547. ADSMATHCrossRefGoogle Scholar
  27. Masarik, J., Beer, J.: 1999, J. Geophys. Res. 104, 12099. ADSCrossRefGoogle Scholar
  28. Matsuzaki, H., et al.: 2007, Nucl. Instrum. Methods Phys. Res. Sect. B 259(1), 36. ADSCrossRefGoogle Scholar
  29. Maunder, E.W.: 1890, Mon. Not. Roy. Astron. Soc. 50, 251. Google Scholar
  30. Miyahara, H., Yokoyama, Y., Masuda, K.: 2008, Earth Planet. Sci. Lett. 272, 290. ADSCrossRefGoogle Scholar
  31. Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., Nakamura, T.: 2004, Solar Phys. 224, 317. ADSCrossRefGoogle Scholar
  32. Miyahara, H., Kitazawa, K., Nagaya, K., Yokoyama, Y., Matsuzaki, H., Masuda, K., Nakamura, T., Muraki, Y.: 2010, J. Cosmol. 8, 1970. ADSGoogle Scholar
  33. Nagaoka, S., Kawano, K., Ito, Y., Okuno, M., Nakao, T., et al.: 1998, In: Nakamura, T. (ed.) Summaries of Researches Using AMS at Nagoya University IX, The Nagoya University Center for Chronological Research, Nagoya, 260. Google Scholar
  34. Nakamura, T., Niu, E., Oda, H., Ikeda, A., Minami, M., et al.: 2000, Nucl. Instrum. Methods Phys. Res. Sect. B 172, 52. ADSCrossRefGoogle Scholar
  35. Pinnegar, C.R., Mansinha, L.: 2004, Signal Process. 84, 1167. MATHCrossRefGoogle Scholar
  36. Plunkett, G., Swindles, G.T.: 2008, Quat. Sci. Rev. 27, 175. ADSCrossRefGoogle Scholar
  37. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., et al.: 2004, Radiocarbon 46, 1029. Google Scholar
  38. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., et al.: 2009, Radiocarbon 51, 1111. Google Scholar
  39. Richards, M.T., Rogers, M.L., Richards, D.St.P.: 2009, Publ. Astron. Soc. Pac. 121, 797. ADSCrossRefGoogle Scholar
  40. Schwabe, S.H.: 1843, Astron. Nachr. 20, 283. ADSCrossRefGoogle Scholar
  41. Siegenthaler, U., Beer, J.: 1988, Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic, Boston, 315. Google Scholar
  42. Solanki, S.K., Krivova, N.A., Schüssler, M., Fligge, M.: 2002, Astron. Astrophys. 396, 1029. ADSCrossRefGoogle Scholar
  43. Stockwell, R.G., Mansinha, L., Lowe, R.P.: 1996, IEEE Trans. Signal Process. 44(4), 998. ADSCrossRefGoogle Scholar
  44. Stuiver, M.: 1991, Quat. Res. 35, 1. CrossRefGoogle Scholar
  45. Stuiver, M., Braziunas, T.F.: 1988, Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic, Boston, 245. Google Scholar
  46. Stuiver, M., Braziunas, T.F.: 1989, Nature 338, 405. ADSCrossRefGoogle Scholar
  47. Stuiver, M., Polach, H.A.: 1977, Radiocarbon 19, 355. Google Scholar
  48. Stuiver, M., Quay, P.D.: 1980, Science 207, 11. ADSCrossRefGoogle Scholar
  49. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., et al.: 1998, Radiocarbon 40, 1041. Google Scholar
  50. Swindles, G.T., Plunkett, G., Roe, H.M.: 2007, J. Quat. Sci. 22(7), 667. CrossRefGoogle Scholar
  51. Usoskin, I.G., Sokoloff, D., Moss, D.: 2009, Solar Phys. 254, 345. ADSCrossRefGoogle Scholar
  52. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Astron. Astrophys. 471, 301. ADSCrossRefGoogle Scholar
  53. Watari, S.: 2008, Space Weather 6, 12. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • K. Nagaya
    • 1
  • K. Kitazawa
    • 1
  • F. Miyake
    • 1
  • K. Masuda
    • 1
  • Y. Muraki
    • 1
  • T. Nakamura
    • 2
  • H. Miyahara
    • 3
  • H. Matsuzaki
    • 4
  1. 1.Solar–Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  2. 2.Center for Chronological ResearchNagoya UniversityNagoyaJapan
  3. 3.Institute for Cosmic Ray ResearchThe University of TokyoTokyoJapan
  4. 4.School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations