Advertisement

Solar Physics

, Volume 280, Issue 1, pp 205–221 | Cite as

A Comparison of the 10.7-cm Radio Flux Values and the International Sunspot Numbers for Solar Activity Cycles 19, 20, and 21

Article

Abstract

A nonlinear analysis of the daily 10.7-cm radio flux values for each of Solar Cycles 19, 20, and 21 is used to determine if the results match those of the International Sunspot Numbers for each of these cycles. Fractals and chaos are described and a brief review of utilizing fractals and chaos is given. The origin of the 10.7-cm radio flux is discussed and a short review of recent work discussing its measurement and its relation to the international sunspot number and other proxies for solar activity cycles given. The parameters used to describe chaos for the 10.7-cm radio flux are discussed. The length of the data sets for either statistical analysis or nonlinear analysis of the 10.7-cm radio flux values is considered. These results indicate that the 10.7-cm radio flux values appear to be stochastic for Cycle 19 and chaotic for Cycles 20 and 21. The International Sunspot Numbers show similar behavior for these three cycles. A day-by-day comparison of the dimensionless 10.7-cm radio flux values and the dimensionless International Sunspot Numbers differences shows a linear trend. The results remain consistent in that the 10.7-cm radio flux values indicate, as did the International Sunspot Numbers, that there is a transition from stochastic behavior for Cycle 19 to chaotic behavior in Cycles 20 and 21. The day-by-day comparison of the 10.7-cm radio flux values and the International Sunspot Numbers emphasizes that the 10.7 cm radio flux values are responding to the magnetic field associated with the sunspots.

Keywords

Radio flux Sunspots Activity cycles Chaos 

Notes

Acknowledgements

The values of the International Sunspot number [R i] are from the Solar Influence Data Centre (SIDC). The values of the 10.7-cm radio flux are from the radio flux data in “Solar Variability Affecting Earth,” National Oceanic and Atmospheric Administration (NOAA) CD Rom “NGDC-05/1”. Cycle times are from the NOAA/National Geophysical Data Center. Calculation of Lyapunov exponents, optimum time lag, global embedding dimension, local dimension, correlation sum, and dimension D 2 were calculated using cspW a set of algorithms in “Tools For Dynamics” provided by H.D.I. Abarbanel.

Supplementary material

11207_2012_43_MOESM1_ESM.xls (850 kb)
(XLS 851 kB)
11207_2012_43_MOESM2_ESM.xls (1.2 mb)
(XLS 1.2 MB)
11207_2012_43_MOESM3_ESM.xls (2.1 mb)
(XLS 2.1 MB)

References

  1. Abarbanel, H.D.I.: 1996, Analysis of Observed Chaotic Data, Springer, New York. MATHCrossRefGoogle Scholar
  2. Abarbanel, H.D.I., Frison, T.W., Tsmring, L.S.: 1998, IEEE Signal Process. 15, 49. ADSCrossRefGoogle Scholar
  3. Alissandrakis, C.E.: 1997, In: Schmieder, B., del Toro Iniesta, J.C., Vazquez, M. (eds.) 1st Advances in Solar Physics Euroconference, Advances in Physics of Sunspots CS-118, Astron. Soc. Pacific, San Francisco, 150. Google Scholar
  4. Bouwer, S.D., Pap, J., Donnelly, R.F.: 1990, In: Schatten, K.H., Arking, A. (eds.) Climate Impact of Solar Variability CP-3086, NASA, Greenbelt, 125. Google Scholar
  5. Brown, R., Bryant, P., Abarbanel, H.D.I.: 1991, Phys. Rev. A 43, 2787. MathSciNetADSCrossRefGoogle Scholar
  6. Chapman, S., Bartels, J.: 1940, Geomagnetism, Clarendon, Oxford, 582. Google Scholar
  7. Chatterjee, T.N., Das, T.K.: 1995, Mon. Not. Roy. Astron. Soc. 274, 858. ADSGoogle Scholar
  8. Covington, A.E.: 1947, Nature 159, 405. ADSCrossRefGoogle Scholar
  9. Covington, A.E.: 1948, Proc. Inst. Radio Eng. 36, 454. Google Scholar
  10. D’Silva, S., Howard, R.F.: 1994, Solar Phys. 151, 213. ADS: http://adsabs.harvard.edu/abs/1994SoPh..151..213D, doi: 10.1007/BF00679072. ADSCrossRefGoogle Scholar
  11. DeToma, G., White, O.R., Harvey, K.L.: 2000, Astrophys. J. 529, 1101. ADSCrossRefGoogle Scholar
  12. Donnelly, R.F.: 1982, J. Geophys. Res. 87, 6331. ADSCrossRefGoogle Scholar
  13. Donnelly, R.F., Heath, D.F., Lean, J.L., Rottman, G.J.: 1983, J. Geophys. Res. 88, 9883. ADSCrossRefGoogle Scholar
  14. Eckman, J.P., Ruelle, D.: 1992, Physica D 56, 185. MathSciNetADSCrossRefGoogle Scholar
  15. Eddy, J.A.: 1977, In: White, O.R. (ed.) The Solar Output and Its Variation, Colorado Assoc. Univ. Press, Boulder, 51. Google Scholar
  16. Feder, J.: 1989, Fractals, Plenum, New York. MATHGoogle Scholar
  17. Feynman, J., Gabriel, S.B.: 1990, Solar Phys. 127, 393. ADS: http://adsabs.harvard.edu/abs/1990SoPh..127..393F, doi: 10.1007/BF00152176. ADSCrossRefGoogle Scholar
  18. Foukal, P., Lean, J.: 1990, Science 247, 556. ADSCrossRefGoogle Scholar
  19. Grassberger, P., Procaccia, I.: 1983, Phys. Rev. Lett. 50, 346. MathSciNetADSCrossRefGoogle Scholar
  20. Howard, R.F.: 1984, Annu. Rev. Astron. Astrophys. 22, 131. ADSCrossRefGoogle Scholar
  21. Hoyt, D.V., Schatten, K.H.: 1988a, Solar Phys. 179, 189. ADS: http://adsabs.harvard.edu/abs/1998SoPh..179..189H, doi: 10.1023/A:1005007527816. ADSCrossRefGoogle Scholar
  22. Hoyt, D.V., Schatten, K.H.: 1988b, Solar Phys. 181, 491. ADS: http://adsabs.harvard.edu/abs/1998SoPh..181..491H, doi: 10.1023/A:1005056326158. ADSCrossRefGoogle Scholar
  23. Kane, R.P., Vats, H.O., Sawant, H.S.: 2001, Solar Phys. 201, 181. ADS: http://adsabs.harvard.edu/abs/2001SoPh..201..181K, doi: 10.1023/A:1010349014498. ADSCrossRefGoogle Scholar
  24. Kaplan, J., Yorke, I.: 1979, In: Pettegen, H.O., Walther, H.O. (eds.) Functions and Differential Equations and Approximation of Fixed Points, Springer, New York. Google Scholar
  25. Kononovich, E.V., Shefov, N.N., Khramova, M.N.: 2002, Geomagn. Aeron. 42(4), 453. Google Scholar
  26. Kremliovski, M.N.: 1994, Solar Phys. 151, 351. ADS: http://adsabs.harvard.edu/abs/1994SoPh..151..351K, doi: 10.1007/BF00679081. ADSCrossRefGoogle Scholar
  27. Kremliovski, M.N.: 1995, Solar Phys. 159, 371. ADS: http://adsabs.harvard.edu/abs/1995SoPh..159..371K, doi: 10.1007/BF00686538. ADSCrossRefGoogle Scholar
  28. Li, K.J., Yun, H.S., Gu, X.M.: 2001, Astrophys. J. Lett. 554, L115. ADSCrossRefGoogle Scholar
  29. Mouradian, Z., Bocchia, R., Botton, C.: 2002, Astron. Astrophys. 394, 1103. ADSCrossRefGoogle Scholar
  30. Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharov, G.E., Jungner, H.: 2002, Solar Phys. 211, 371. ADSCrossRefGoogle Scholar
  31. Oseledec, V.I.: 1968, Trans. Mosc. Math. Soc. 19, 197. MathSciNetGoogle Scholar
  32. Oster, L.: 1990, J. Geophys. Res. 95, 6247. ADSCrossRefGoogle Scholar
  33. Rigozo, N.R., Echer, E., Viera, L.E.A., Nordemann, D.J.R.: 2001, Solar Phys. 203, 179. ADS: http://adsabs.harvard.edu/abs/2001SoPh..203..179R, doi: 10.1023/A:1012745612022. ADSCrossRefGoogle Scholar
  34. Rogachevskii, I., Kleeorin, N.: 2007, Phys. Rev. E 76, 1. MathSciNetCrossRefGoogle Scholar
  35. Rušin, V., Rybansky, M.: 1990, Bull. Astron. Inst. Czech. 41, 263. ADSGoogle Scholar
  36. Ruzmakin, A.: 2001, Space Sci. Rev. 95, 43. ADSCrossRefGoogle Scholar
  37. Salakhutdinova, I.I.: 1998, Solar Phys. 181, 221. ADS: http://adsabs.harvard.edu/abs/1998SoPh..181..221S, doi: 10.1023/A:1016555207872. ADSCrossRefGoogle Scholar
  38. Salakhutdinova, I.I.: 1999, Solar Phys. 188, 377. ADS: http://adsabs.harvard.edu/abs/1999SoPh..188..377S, doi: 10.1023/A:1005265229175. ADSCrossRefGoogle Scholar
  39. Schmahl, E.J., Kundu, M.R.: 1998, In: Balasubrarmaniam, K.S., Harvey, J.W., Rabin, D.M. (eds.) CS-140, Astron. Soc. Pacific, San Francisco, 387. ADS: http://adsabs.harvard.edu/abs/1998ASPC..140..387S.
  40. Shove, D.J.: 1955, J. Geophys. Res. 60, 127. ADSCrossRefGoogle Scholar
  41. Siscoe, G.L.: 1976, J. Geophys. Res. 81, 6224. ADSCrossRefGoogle Scholar
  42. Takens, F.: 1980, In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Springer, Berlin, 898. Google Scholar
  43. Tapping, K.F., Boteler, D., Charboneau, P., Manson, A., Paquette, H.: 2007, Solar Phys. 246, 309. ADS: http://adsabs.harvard.edu/abs/2007SoPh..246..309T, doi: 10.1007/s11207-007-9047-x. ADSCrossRefGoogle Scholar
  44. Tapping, K.F., DeTracy, B.: 1990, Solar Phys. 127, 321. ADS: http://adsabs.harvard.edu/abs/1990SoPh..127..321T, doi: 10.1007/BF00152171. ADSCrossRefGoogle Scholar
  45. Torrence, C., Campo, G.P.: 1998, Bull. Am. Meteorol. Soc. 79, 61. ADSCrossRefGoogle Scholar
  46. Ulrich, R., Bertello, L.: 1995, Nature 377, 214. ADSCrossRefGoogle Scholar
  47. Waldmeier, M.: 1961, The Sunspot-Activity in the Years 1610 – 1960, Schulthess & Co. Ag, Zurich. Google Scholar
  48. Watari, S.: 1995, Solar Phys. 158, 365. ADS: http://adsabs.harvard.edu/abs/1995SoPh..158..365W, doi: 10.1007/BF00795669. ADSGoogle Scholar
  49. Watari, S.: 1996, Solar Phys. 163, 371. ADS: http://adsabs.harvard.edu/abs/1996SoPh..163..371W, doi: 10.1007/BF00148008. ADSGoogle Scholar
  50. White, O.R., Rottman, G.J.: 2000, Space Sci. Rev. 94, 93. ADSCrossRefGoogle Scholar
  51. Wilson, R.M., Rabin, D., Moore, R.L.: 1987, Solar Phys. 111, 279. ADS: http://adsabs.harvard.edu/abs/1987SoPh..111..279W, doi: 10.1007/BF00148520. ADSCrossRefGoogle Scholar
  52. Xanthakis, J., Poulakos, C.: 1985, Astrophys. Space Sci. 111, 179. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations