Solar Physics

, Volume 285, Issue 1–2, pp 295–315 | Cite as

Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model

  • B. Vršnak
  • T. Žic
  • D. Vrbanec
  • M. Temmer
  • T. Rollett
  • C. Möstl
  • A. Veronig
  • J. Čalogović
  • M. Dumbović
  • S. Lulić
  • Y.-J. Moon
  • A. Shanmugaraju
OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE

Abstract

We present the “Drag-Based Model” (DBM) of heliospheric propagation of interplanetary coronal mass ejections (ICMEs). The DBM is based on the hypothesis that the driving Lorentz force, which launches a CME, ceases in the upper corona and that beyond a certain distance the dynamics becomes governed solely by the interaction of the ICME and the ambient solar wind. In particular, we consider the option where the drag acceleration has a quadratic dependence on the ICME relative speed, which is expected in a collisionless environment, where the drag is caused primarily by emission of magnetohydrodynamic (MHD) waves. In this paper we present the simplest version of DBM, where the equation of motion can be solved analytically, providing explicit solutions for the Sun–Earth ICME transit time and impact speed. This offers easy handling and straightforward application to real-time space-weather forecasting. Beside presenting the model itself, we perform an analysis of DBM performances, applying a statistical and case-study approach, which provides insight into the advantages and drawbacks of DBM. Finally, we present a public, DBM-based, online forecast tool.

Keywords

Coronal mass ejections, interplanetary Magnetohydrodynamics Solar wind, disturbances 

References

  1. Borgazzi, A., Lara, A., Echer, E., Alves, M.V.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885 – 889. doi:10.1051/0004-6361/200811171. ADSMATHCrossRefGoogle Scholar
  2. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24. ADSCrossRefGoogle Scholar
  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi:10.1007/BF00733434. ADSCrossRefGoogle Scholar
  4. Brueckner, G.E., Delaboudiniere, J.-P., Howard, R.A., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M., Thompson, B., Wang, D.: 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett. 25, 3019 – 3022. doi:10.1029/98GL00704. ADSCrossRefGoogle Scholar
  5. Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. 109, A03103. doi:10.1029/2003JA010149. ADSCrossRefGoogle Scholar
  6. Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Comm. 1, 74. doi:10.1038/ncomms1077. ADSCrossRefGoogle Scholar
  7. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149. doi:10.1023/B:SOLA.0000033366.10725.a2. ADSCrossRefGoogle Scholar
  8. Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855 – 4870. doi:10.1029/95JA03769. ADSCrossRefGoogle Scholar
  9. Chen, J., Kunkel, V.: 2010, Temporal and physical connection between coronal mass ejections and flares. Astrophys. J. 717, 1105 – 1122. doi:10.1088/0004-637X/717/2/1105. ADSCrossRefGoogle Scholar
  10. Cho, K.-S., Moon, Y.-J., Dryer, M., Fry, C.D., Park, Y.-D., Kim, K.-S.: 2003, A statistical comparison of interplanetary shock and CME propagation models. J. Geophys. Res. 108, SSH8. doi:10.1029/2003JA010029. Google Scholar
  11. Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S.R., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. 750, 23. doi:10.1088/0004-637X/750/1/23. ADSCrossRefGoogle Scholar
  12. Davis, C.J., Davies, J.A., Lockwood, M., Rouillard, A.P., Eyles, C.J., Harrison, R.A.: 2009, Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett. 36, L08102. doi:10.1029/2009GL038021. ADSCrossRefGoogle Scholar
  13. Dryer, M., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2004, Real-time shock arrival predictions during the “Halloween 2003 epoch”. Space Weather 2, S09001. doi:10.1029/2004SW000087. ADSCrossRefGoogle Scholar
  14. Falkenberg, T.V., Vršnak, B., Taktakishvili, A., Odstrcil, D., MacNeice, P., Hesse, M.: 2010, Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters. Space Weather 8, S06004. doi:10.1029/2009SW000555. ADSCrossRefGoogle Scholar
  15. Falkenberg, T.V., Vennerstrom, S., Brain, D.A., Delory, G., Taktakishvili, A.: 2011, Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001. J. Geophys. Res. 116, A06104. doi:10.1029/2010JA016279. ADSCrossRefGoogle Scholar
  16. Farrugia, C.J., Berdichevsky, D.B., Möstl, C., Galvin, A.B., Leitner, M., Popecki, M.A., Simunac, K.D.C., Opitz, A., Lavraud, B., Ogilvie, K.W., Veronig, A.M., Temmer, M., Luhmann, J.G., Sauvaud, J.A.: 2011, Multiple, distant (40 deg) in situ observations of a magnetic cloud and a corotating interaction region complex. J. Atmos. Solar-Terr. Phys. 73, 1254 – 1269. doi:10.1016/j.jastp.2010.09.011. ADSCrossRefGoogle Scholar
  17. Feng, X.S., Zhang, Y., Sun, W., Dryer, M., Fry, C.D., Deehr, C.S.: 2009, A practical database method for predicting arrivals of “average” interplanetary shocks at Earth. J. Geophys. Res. 114, A01101. doi:10.1029/2008JA013499. ADSCrossRefGoogle Scholar
  18. Fry, C.D., Dryer, M., Smith, Z., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2003, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. 108, SSH5. doi:10.1029/2002JA009474. CrossRefGoogle Scholar
  19. González-Esparza, J.A., Lara, A., Pérez-Tijerina, E., Santillán, A., Gopalswamy, N.: 2003, A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium. J. Geophys. Res. 108, SSH9. doi:10.1029/2001JA009186. CrossRefGoogle Scholar
  20. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148. ADSCrossRefGoogle Scholar
  21. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207 – 29218. doi:10.1029/2001JA000177. ADSCrossRefGoogle Scholar
  22. Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 3. Physical implications. Space Sci. Rev. 147, 89 – 110. doi:10.1007/s11214-009-9577-7. ADSCrossRefGoogle Scholar
  23. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi:10.1007/s11214-008-9341-4. ADSCrossRefGoogle Scholar
  24. Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., Johnston, J.C., Kahler, S.W., Mozer, J.B., Price, S., Radick, R.R., Sagalyn, R., Sinclair, D., Simnett, G.M., Eyles, C.J., Cooke, M.P., Tappin, S.J., Kuchar, T., Mizuno, D., Webb, D.F., Anderson, P.A., Keil, S.L., Gold, R.E., Waltham, N.R.: 2004, The solar mass-ejection imager (SMEI) mission. Solar Phys. 225, 177 – 207. doi:10.1007/s11207-004-2766-3. ADSCrossRefGoogle Scholar
  25. Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169 – 181. doi:10.1007/s11214-006-9103-0. ADSCrossRefGoogle Scholar
  26. Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) Proc. IAU Symp. 257, 287 – 290. doi:10.1017/S1743921309029421. Google Scholar
  27. Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165 – 180. ADSCrossRefGoogle Scholar
  28. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi:10.1088/0004-637X/722/2/1762. ADSCrossRefGoogle Scholar
  29. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME–CME interaction. Ann. Geophys. 27, 3479 – 3488. doi:10.5194/angeo-27-3479-2009. ADSCrossRefGoogle Scholar
  30. Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115, A07106. doi:10.1029/2009JA015099. ADSCrossRefGoogle Scholar
  31. Maloney, S.A., Gallagher, P.T.: 2010, Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 724, L127 – L132. doi:10.1088/2041-8205/724/2/L127. ADSCrossRefGoogle Scholar
  32. Manchester, W.B., Gombosi, T.I., Roussev, I., Ridley, A., De Zeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J. Geophys. Res. 109, A02107. doi:10.1029/2003JA010150. ADSCrossRefGoogle Scholar
  33. Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345 – 368. doi:10.1007/s11207-006-0100-y. ADSCrossRefGoogle Scholar
  34. Manoharan, P.K.: 2010, Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137 – 157. doi:10.1007/s11207-010-9593-5. ADSCrossRefGoogle Scholar
  35. Manoharan, P.K., Mujiber Rahman, A.: 2011, Coronal mass ejections: propagation time and associated internal energy. J. Atmos. Solar-Terr. Phys. 73, 671 – 677. doi:10.1016/j.jastp.2011.01.017. ADSCrossRefGoogle Scholar
  36. Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G., Howard, R.A.: 2004, Influence of coronal mass ejection interaction on propagation of interplanetary shocks. J. Geophys. Res. 109, A06109. doi:10.1029/2003JA010300. ADSCrossRefGoogle Scholar
  37. McKenna-Lawlor, S.M.P., Dryer, M., Smith, Z., Kecskemety, K., Fry, C.D., Sun, W., Deehr, C.S., Berdichevsky, D., Kudela, K., Zastenker, G.: 2002, Arrival times of flare/halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations. Ann. Geophys. 20, 917 – 935. doi:10.5194/angeo-20-917-2002. ADSCrossRefGoogle Scholar
  38. McKenna-Lawlor, S.M.P., Dryer, M., Kartalev, M.D., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Kecskemety, K., Kudela, K.: 2006, Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. J. Geophys. Res. 111, A11103. doi:10.1029/2005JA011162. ADSCrossRefGoogle Scholar
  39. McKenna-Lawlor, S.M.P., Dryer, M., Fry, C.D., Smith, Z.K., Intriligator, D.S., Courtney, W.R., Deehr, C.S., Sun, W., Kecskemety, K., Kudela, K., Balaz, J., Barabash, S., Futaana, Y., Yamauchi, M., Lundin, R.: 2008, Predicting interplanetary shock arrivals at Earth, Mars, and Venus: a real-time modeling experiment following the solar flares of 5 – 14 December 2006. J. Geophys. Res. 113, A06101. doi:10.1029/2007JA012577. ADSCrossRefGoogle Scholar
  40. Michalek, G., Gopalswamy, N., Yashiro, S.: 2009, Expansion speed of coronal mass ejections. Solar Phys. 260, 401 – 406. doi:10.1007/s11207-009-9464-0. ADSCrossRefGoogle Scholar
  41. Michałek, G., Gopalswamy, N., Lara, A., Manoharan, P.K.: 2004, Arrival time of halo coronal mass ejections in the vicinity of the Earth. Astron. Astrophys. 423, 729 – 736. doi:10.1051/0004-6361:20047184. ADSCrossRefGoogle Scholar
  42. Morrill, J.S., Howard, R.A., Vourlidas, A., Webb, D.F., Kunkel, V.: 2009, The impact of geometry on observations of CME brightness and propagation. Solar Phys. 259, 179 – 197. doi:10.1007/s11207-009-9403-0. ADSCrossRefGoogle Scholar
  43. Möstl, C., Davies, J.A.: 2012, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys., in press. doi:10.1007/s11207-012-9978-8.
  44. Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180 – L185. doi:10.1088/0004-637X/705/2/L180. ADSCrossRefGoogle Scholar
  45. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 372, L24103. doi:10.1029/2010GL045175. Google Scholar
  46. Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 110, A02106. doi:10.1029/2004JA010745. ADSCrossRefGoogle Scholar
  47. Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109, A02116. doi:10.1029/2003JA010135. ADSCrossRefGoogle Scholar
  48. Oler, C.: 2004, Prediction performance of space weather forecast centers following the extreme events of October and November 2003. Space Weather 2, S08001. doi:10.1029/2004SW000076. ADSCrossRefGoogle Scholar
  49. Owens, M., Cargill, P.: 2004, Predictions of the arrival time of coronal mass ejections at 1 AU: an analysis of the causes of errors. Ann. Geophys. 22, 661 – 671. doi:10.5194/angeo-22-661-2004. ADSCrossRefGoogle Scholar
  50. Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369 – 1385. doi:10.1086/518683. ADSCrossRefGoogle Scholar
  51. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283 – 291. doi:10.1088/0004-637X/701/1/283. ADSCrossRefGoogle Scholar
  52. Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276, 293 – 314. doi:10.1007/s11207-011-9897-0. ADSCrossRefGoogle Scholar
  53. Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys. 73, 1201 – 1213. doi:10.1016/j.jastp.2010.08.015. ADSCrossRefGoogle Scholar
  54. Rouillard, A.P., Lavraud, B., Sheeley, N.R., Davies, J.A., Burlaga, L.F., Savani, N.P., Jacquey, C., Forsyth, R.J.: 2010, White light and in situ comparison of a forming merged interaction region. Astrophys. J. 719, 1385 – 1392. doi:10.1088/0004-637X/719/2/1385. ADSCrossRefGoogle Scholar
  55. Russell, C.T., Mulligan, T.: 2002, On the magnetosheath thicknesses of interplanetary coronal mass ejections. Planet. Space Sci. 50, 527 – 534. doi:10.1016/S0032-0633(02)00031-4. ADSCrossRefGoogle Scholar
  56. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033 – 1059. ADSCrossRefGoogle Scholar
  57. Sheeley, N.R. Jr., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R Sun. Astrophys. J. 484, 472 – 478. doi:10.1086/304338. ADSCrossRefGoogle Scholar
  58. Smith, Z.K., Dryer, M., McKenna-Lawlor, S.M.P., Fry, C.D., Deehr, C.S., Sun, W.: 2009, Operational validation of HAFv2’s predictions of interplanetary shock arrivals at Earth: declining phase of Solar Cycle 23. J. Geophys. Res. 114, A05106. doi:10.1029/2008JA013836. ADSCrossRefGoogle Scholar
  59. Taktakishvili, A., Kuznetsova, M., MacNeice, P., Hesse, M., Rastätter, L., Pulkkinen, A., Chulaki, A., Odstrcil, D.: 2009, Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7, S03004. doi:10.1029/2008SW000448. ADSCrossRefGoogle Scholar
  60. Tappin, S.J.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248. doi:10.1007/s11207-006-2065-2. ADSCrossRefGoogle Scholar
  61. Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371 – 383. doi:10.1007/s11207-007-0336-1. ADSCrossRefGoogle Scholar
  62. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101 – 112. doi:10.1088/0004-637X/743/2/101. ADSCrossRefGoogle Scholar
  63. Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57. doi:10.1088/0004-637X/749/1/57. ADSCrossRefGoogle Scholar
  64. Vršnak, B.: 2001a, Deceleration of coronal mass ejections. Solar Phys. 202, 173 – 189. ADSCrossRefGoogle Scholar
  65. Vršnak, B.: 2001b, Dynamics of solar coronal eruptions. J. Geophys. Res. 106, 25249 – 25260. doi:10.1029/2000JA004007. ADSCrossRefGoogle Scholar
  66. Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, SSH2. doi:10.1029/2001JA000120. Google Scholar
  67. Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937 – 943. doi:10.1051/0004-6361:20077499. ADSCrossRefGoogle Scholar
  68. Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315 – 330. doi:10.1007/s11207-007-0285-8. ADSCrossRefGoogle Scholar
  69. Vršnak, B., Vrbanec, D., Čalogović, J.: 2008, Dynamics of coronal mass ejections. The mass-scaling of the aerodynamic drag. Astron. Astrophys. 490, 811 – 815. doi:10.1051/0004-6361:200810215. ADSCrossRefGoogle Scholar
  70. Vršnak, B., Ruždjak, D., Sudar, D., Gopalswamy, N.: 2004, Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 423, 717 – 728. doi:10.1051/0004-6361:20047169. ADSCrossRefGoogle Scholar
  71. Vršnak, B., Sudar, D., Ruždjak, D., Žic, T.: 2007, Projection effects in coronal mass ejections. Astron. Astrophys. 469, 339 – 346. doi:10.1051/0004-6361:20077175. ADSCrossRefGoogle Scholar
  72. Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. doi:10.1051/0004-6361/200913482. ADSCrossRefGoogle Scholar
  73. Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Odstrcil, D., Jackson, B.V., Bisi, M.M., Harrison, R.A., Morrill, J.S., Howard, R.A., Johnston, J.C.: 2009, Study of CME propagation in the inner heliosphere: SOHO LASCO, SMEI and STEREO HI observations of the January 2007 events. Solar Phys. 256, 239 – 267. doi:10.1007/s11207-009-9351-8. ADSCrossRefGoogle Scholar
  74. Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524 – 1532. doi:10.1088/0004-637X/715/2/1524. ADSCrossRefGoogle Scholar
  75. Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. 109, A03109. doi:10.1029/2003JA010226. ADSCrossRefGoogle Scholar
  76. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi:10.1029/2003JA010282. ADSCrossRefGoogle Scholar
  77. Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520 – 533. doi:10.1086/344611. ADSCrossRefGoogle Scholar
  78. Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107, SSH13. doi:10.1029/2001JA009143. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • B. Vršnak
    • 1
  • T. Žic
    • 1
  • D. Vrbanec
    • 1
  • M. Temmer
    • 2
  • T. Rollett
    • 2
  • C. Möstl
    • 2
    • 3
  • A. Veronig
    • 2
  • J. Čalogović
    • 1
  • M. Dumbović
    • 1
  • S. Lulić
    • 4
  • Y.-J. Moon
    • 5
  • A. Shanmugaraju
    • 6
  1. 1.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  2. 2.IGAM, Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.Space Science LaboratoryUniversity of CaliforniaBerkeleyUSA
  4. 4.Karlovac University of Applied SciencesKarlovacCroatia
  5. 5.School of Space ResearchKyung Hee UniversityYonginRepublic of Korea
  6. 6.Department of PhysicsArul Anandar CollegeKarumathurIndia

Personalised recommendations