Advertisement

Solar Physics

, Volume 280, Issue 1, pp 111–124 | Cite as

The Diagnostic Potential of Transition Region Lines Undergoing Transient Ionization in Dynamic Events

  • J. G. DoyleEmail author
  • A. Giunta
  • A. Singh
  • M. S. Madjarska
  • H. Summers
  • B. J. Kellett
  • M. O’Mullane
Article

Abstract

We discuss the diagnostic potential of high cadence UV spectral data when transient ionization is considered. For this we use high cadence UV spectra taken during the impulsive phase of a solar flare (observed with instruments on-board the Solar Maximum Mission) which showed excellent correspondence with hard X-ray pulses. The ionization fraction of the transition region ion O v and, in particular, the contribution function for the O v 1371 Å line are computed within the Atomic Data and Analysis Structure, which is a collection of fundamental and derived atomic data and codes to manipulate them. Due to transient ionization, the O v 1371 Å line is enhanced in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature than in ionization equilibrium. The rise time and enhancement factor depend mostly on the electron density. The fractional increase in the O v 1371 Å emissivity due to transient ionization can reach a factor of two–four and can explain the fast response in the line flux of transition regions ions during the impulsive phase of flares solely as a result of transient ionization. This technique can be used to diagnose the electron temperature and density of solar flares observed with the forthcoming Interface Region Imaging Spectrograph.

Keywords

Atomic processes Line: formation Sun: activity Sun: atmosphere 

Notes

Acknowledgements

Research at the Armagh Observatory is grant-aided by the Northern Ireland Department of Culture, Arts and Leisure. We thank STFC for support via ST/J001082/1. MM and JGD thank the International Space Science Institute, Bern for the support of the team ‘Solar small-scale transient phenomena and their contribution to coronal heating’.

References

  1. Alexander, D., Coyner, A.J.: 2006, Astrophys. J. 640, 505. ADSCrossRefGoogle Scholar
  2. Cheng, C.-C., Tandberg-Hanssen, E., Bruner, E.C., Orwig, L., Frost, K.J., Kenny, P.J., Woodgate, B.E., Shine, R.A.: 1981, Astrophys. J. Lett. 248, L39. ADSCrossRefGoogle Scholar
  3. Cheng, C.-C., Tandberg-Hanssen, E., Orwig, L.E.: 1984, Astrophys. J. 278, 853. ADSCrossRefGoogle Scholar
  4. Cheng, C.-C., Vanderveen, K., Orwig, L.E., Tandberg-Hanseen, E.: 1988, Astrophys. J. 330, 480. ADSCrossRefGoogle Scholar
  5. Coyner, A.J., Alexander, D.: 2009, Astrophys. J. 705, 554. ADSCrossRefGoogle Scholar
  6. Doscheck, G.A., Tanaka, K.: 1987, Astrophys. J. 323, 799. ADSCrossRefGoogle Scholar
  7. Doyle, J.G., Kellett, B.J., Byrne, P.B., Avgoloupis, S., Mavridis, L.N., Seiradakis, J.H., et al.: 1991, Mon. Not. Roy. Astron. Soc. 248, 503. ADSGoogle Scholar
  8. Doyle, J.G., Madjarska, M.S., Roussev, I., Teriaca, L., Giannikakis, J.: 2002, Astron. Astrophys. 396, 255. ADSCrossRefGoogle Scholar
  9. Doyle, J.G., Ishak, B., Madjarska, M.S., O’Shea, E., Dzifćáková, E.: 2006, Astron. Astrophys. 451, L35. ADSCrossRefGoogle Scholar
  10. Kane, S.R., Donnelly, R.F.: 1971, Astrophys. J. 164, 151. ADSCrossRefGoogle Scholar
  11. Kellett, B.J., Tsikoudi, V.: 1999, Mon. Not. Roy. Astron. Soc. 308, 111. ADSCrossRefGoogle Scholar
  12. Lanza, A.F., Spadaro, D., Lanzafame, A.C., Antiochos, S.K., MacNeice, P.J., Spicer, D.S., O’Mullane, M.G.: 2001, Astrophys. J. 547, 1116. ADSCrossRefGoogle Scholar
  13. Madjarska, M.S., Doyle, J.G., De Pontieu, B.: 2009, Astrophys. J. 701, 253. ADSCrossRefGoogle Scholar
  14. McWhirter, R.W.P.: 1965, In: Huddlestone, R.H., Leonard, S.L. (eds.) Plasma Diagnostic Techniques, Academic Press, New York, 201. Google Scholar
  15. McWhirter, R.W.P., Thonemann, P.C., Wilson, R.: 1975, Astron. Astrophys. 40, 63. ADSGoogle Scholar
  16. McWhirter, R.W.P., Summers, H.P.: 1984, In: Barnett, C.F., Harrison, M.F.A. (eds.) Applied Atomic Collision Physics, Volume 2: Plasmas, Academic Press, New York, 52 – 111. Google Scholar
  17. Orwig, L.E., Frost, K.J., Dennis, B.R.: 1980, Solar Phys. 65, 250. CrossRefGoogle Scholar
  18. Poland, A.I., Orwig, L.E., Mariska, J.T., Nakatsuka, R., Auer, L.H.: 1984, Astrophys. J. 280, 457. ADSCrossRefGoogle Scholar
  19. Raymond, J.C.: 1990, Astrophys. J. 365, 387. ADSCrossRefGoogle Scholar
  20. Roussev, I., Doyle, J.G., Galsgaard, K., Erdelyi, R.: 2001, Astron. Astrophys. 380, 719. ADSCrossRefGoogle Scholar
  21. Summers, H.P., Dickson, W.J., O’Mullane, M.G., Badnell, N.R., Whiteford, A.D., Brooks, D.H., Lang, J., Loch, S.D., Griffin, D.C.: 2006, Plasma Phys. Control. Fusion 48, 263. ADSCrossRefGoogle Scholar
  22. Summers, H.P.: 2009, The ADAS User Manual. http://www.adas.ac.uk/manual.php. Google Scholar
  23. Warren, H.P., Warshall, A.D.: 2001, Astrophys. J. 560, L87. ADSCrossRefGoogle Scholar
  24. Woodgate, B.E., Brandt, J.C., Kalet, M.W., Kenny, P.J., Tandberg-Hanssen, E.A., Bruner, E.C., Beckers, J.M., Henze, W., Knox, E.D., Hyder, C.L.: 1980, Solar Phys. 65, 73. ADSCrossRefGoogle Scholar
  25. Woodgate, B.E., Shine, R.A., Poland, A.I., Orwig, L.E.: 1983, Astrophys. J. 265, 530. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. G. Doyle
    • 1
    Email author
  • A. Giunta
    • 2
    • 3
  • A. Singh
    • 1
    • 4
  • M. S. Madjarska
    • 1
  • H. Summers
    • 2
    • 3
  • B. J. Kellett
    • 3
  • M. O’Mullane
    • 2
    • 3
  1. 1.Armagh ObservatoryArmaghN. Ireland
  2. 2.Department of PhysicsUniversity of StrathclydeGlasgowScotland
  3. 3.Space Science and Technology DepartmentSTFC Rutherford Appleton LaboratoryDidcotUK
  4. 4.Dept. of Physics and Electronics, Deen Dayal Upadhyaya CollegeUniversity of DelhiDelhiIndia

Personalised recommendations