Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magneto-Acoustic Energetics Study of the Seismically Active Flare of 15 February 2011


Multi-wavelength studies of energetic solar flares with seismic emissions have revealed interesting common features between them. We studied the first GOES X-class flare of Solar Cycle 24, as detected by the Solar Dynamics Observatory (SDO). For context, seismic activity from this flare (SOL2011-02-15T01:55-X2.2, in NOAA AR 11158) has been reported by Kosovichev (Astrophys. J. Lett., 734, L15, 2011) and Zharkov et al. (Astrophys. J. Lett., 741, L35, 2011). Based on Dopplergram data from the Helioseismic and Magnetic Imager (HMI), we applied standard methods of local helioseismology in order to identify the seismic sources in this event. RHESSI hard X-ray data are used to check the correlation between the location of the seismic sources and the particle-precipitation sites in during the flare. Using HMI magnetogram data, the temporal profile of fluctuations in the photospheric line-of-sight magnetic field is used to estimate the magnetic-field change in the region where the seismic signal was observed. This leads to an estimate of the work done by the Lorentz-force transient on the photosphere of the source region. In this instance, this is found to be a significant fraction of the acoustic energy in the attendant seismic emission, suggesting that Lorentz forces can contribute significantly to the generation of sunquakes. However, there are regions in which the signature of the Lorentz force is much stronger, but from which no significant acoustic emission emanates.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    Because B los varies considerably across the source region, the mean of B losΔB los can be considerably different from the product of the means used as a proxy in Equation (7). The error could be of order 100 %. However, we think that it is unlikely to be anything like an order of magnitude.


  1. Beşliu-Ionescu, D., Donea, A.-C., Cally, P., Lindsey, C.: 2006, Significant acoustic activity in AR10720 on January 15, 2005. Rom. Astron. J. 16, 203.

  2. Donea, A.-C., Lindsey, C.: 2005, Seismic emission from the solar flares of 2003 October 28 and 29. Astrophys. J. 630, 1168 – 1183. doi: 10.1086/432155 .

  3. Donea, A.-C., Braun, D.C., Lindsey, C.: 1999, Seismic images of a solar flare. Astrophys. J. Lett. 513, L143 – L146. doi: 10.1086/311915 .

  4. Donea, A.-C., Lindsey, C., Braun, D.C.: 2000, Stochastic seismic emission from acoustic glories and the quiet Sun. Solar Phys. 192, 321 – 333. doi: 10.1023/A:1005280327665 .

  5. Donea, A.-C., Besliu-Ionescu, D., Cally, P.S., Lindsey, C., Zharkova, V.V.: 2006, Seismic emission from A M9.5-class solar flare. Solar Phys. 239, 113 – 135. doi: 10.1007/s11207-006-0108-3 .

  6. Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: 2012, Global forces in eruptive solar flares: The Lorentz force acting on the solar atmosphere and the solar interior. Solar Phys. 277, 59 – 76. doi: 10.1007/s11207-011-9907-2 .

  7. Hudson, H.S.: 2000, Implosions in coronal transients. Astrophys. J. Lett. 531, L75 – L77. doi: 10.1086/312516 .

  8. Hudson, H.S., Fisher, G.H., Welsch, B.T.: 2008, Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity CS-383, Astron. Soc. Pacific, San Francisco, 221.

  9. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61 – 86. doi: 10.1023/A:1022436213688 .

  10. Kosovichev, A.G.: 2011, Helioseismic response to the X2.2 solar flare of 2011 February 15. Astrophys. J. Lett. 734, L15. doi: 10.1088/2041-8205/734/1/L15 .

  11. Kosovichev, A.G., Zharkova, V.V.: 1998, X-ray flare sparks quake inside Sun. Nature 393, 317 – 318. doi: 10.1038/30629 .

  12. Lindsey, C., Braun, D.C.: 2000, Basic principles of solar acoustic holography (Invited Review). Solar Phys. 192, 261 – 284. doi: 10.1023/A:1005227200911 .

  13. Martínez-Oliveros, J.C., Moradi, H., Donea, A.-C.: 2008, Seismic emissions from a highly impulsive M6.7 solar flare. Solar Phys. 251, 613 – 626. doi: 10.1007/s11207-008-9122-y .

  14. Martínez-Oliveros, J.C., Moradi, H., Besliu-Ionescu, D., Donea, A.-C., Cally, P.S., Lindsey, C.: 2007, From gigahertz to millihertz: A multiwavelength study of the acoustically active 14 August 2004 M7.4 solar flare. Solar Phys. 245, 121 – 139. doi: 10.1007/s11207-007-9004-8 .

  15. Moradi, H., Donea, A.-C., Lindsey, C., Besliu-Ionescu, D., Cally, P.S.: 2007, Helioseismic analysis of the solar flare-induced sunquake of 2005 January 15. Mon. Not. Roy. Astron. Soc. 374, 1155 – 1163. doi: 10.1111/j.1365-2966.2006.11234.x .

  16. Schou, J., Borrero, J.M., Norton, A.A., Tomczyk, S., Elmore, D., Card, G.L.: 2012, Polarization Calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Solar Phys. 275, 327 – 355. doi: 10.1007/s11207-010-9639-8 .

  17. Sudol, J.J., Harvey, J.W.: 2005, Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635, 647 – 658. doi: 10.1086/497361 .

  18. Zharkov, S., Green, L.M., Matthews, S.A., Zharkova, V.V.: 2011, 2011 February 15: Sunquakes produced by flux rope eruption. Astrophys. J. Lett. 741, L35. doi: 10.1088/2041-8205/741/2/L35 .

  19. Zharkova, V.V.: 2008, The mechanisms of particle kinetics and dynamics leading to seismic emission and sunquakes. Solar Phys. 251, 665 – 666. doi: 10.1007/s11207-008-9266-9 .

  20. Zharkova, V.V., Zharkov, S.I.: 2007, On the origin of three seismic sources in the proton-rich flare of 2003 October 28. Astrophys. J. 664, 573 – 585. doi: 10.1086/518731 .

  21. Zharkova, V.V., Zharkov, S.I., Ipson, S.S., Benkhalil, A.K.: 2005, Toward magnetic field dissipation during the 23 July 2002 solar flare measured with Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSIgr). J. Geophys. Res. 110(A9), 8104. doi: 10.1029/2004JA010934 .

Download references


The Berkeley group was supported by NASA under contract NNX11AP05G. Special thanks to K.D. Leka and Graham Barnes for their helpful comments and discussion to improve the ideas presented in this work.

Author information

Correspondence to J. D. Alvarado-Gómez.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alvarado-Gómez, J.D., Buitrago-Casas, J.C., Martínez-Oliveros, J.C. et al. Magneto-Acoustic Energetics Study of the Seismically Active Flare of 15 February 2011. Sol Phys 280, 335–345 (2012).

Download citation


  • Magnetic field variation
  • Flares
  • Sunquakes