Solar Physics

, Volume 284, Issue 1, pp 217–233 | Cite as

Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

FLUX-ROPE STRUCTURE OF CORONAL MASS EJECTIONS

Abstract

In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, “magnetic clouds” (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (FR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-β state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise continuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-β, CME width, and the ratio O 7/O 6 are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86 % level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap). Thus, idea v) is not supported. Choosing between ideas i) and iv) is more challenging, since they may effectively be indistinguishable from one another by a single in-situ spacecraft. We offer some suggestions on how future studies may address this.

Keywords

Coronal mass ejections Magnetic flux ropes Magnetic clouds 

Notes

Acknowledgements

P.R. gratefully acknowledges the support of NSF’s FESD program as well as NASA SR&T and GI programs, the latter through a subcontract with NRL. We also acknowledge the use of Ulysses observations from NASA/GSFC’s Space Physics Data Facility’s COHOWeb service, and thank the Ulysses PIs who have made their observations available via this source.

References

  1. Afifi, A., Clark, V., May, S.: 2011, Practical Multivariate Analysis, 5th edn. Texts in Statistical Science, Taylor & Francis, London. ISBN9781439816806. Google Scholar
  2. Akaike, H.: 1974, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716 – 723. MathSciNetADSMATHCrossRefGoogle Scholar
  3. Bellan, P.M.: 2000, Simulating solar prominences in the laboratory. Am. Sci. 88, 136. doi: 10.1511/2000.2.136. ADSGoogle Scholar
  4. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725 – 5734. doi: 10.1029/JA092iA06p05725. ADSCrossRefGoogle Scholar
  6. Burlaga, L.F., Sittler, E.C.J., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP-8 observations. J. Geophys. Res. 86, 6673 – 6684. ADSCrossRefGoogle Scholar
  7. Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H., Reinard, A.: 2001, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999. J. Geophys. Res. 106(A10), 20957 – 20978. ADSCrossRefGoogle Scholar
  8. Cane, H.V.: 1988, The large-scale structure of flare-associated interplanetary shocks. J. Geophys. Res. 93, 1 – 6. doi: 10.1029/JA093iA01p00001. ADSCrossRefGoogle Scholar
  9. Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 108, 1156. doi: 10.1029/2002JA009817. CrossRefGoogle Scholar
  10. Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102, 7075 – 7086. doi: 10.1029/97JA00149. ADSCrossRefGoogle Scholar
  11. Du, D., Wang, C., Hu, Q.: 2007, Propagation and evolution of a magnetic cloud from ACE to Ulysses. J. Geophys. Res. 112, 9101. doi: 10.1029/2007JA012482. CrossRefGoogle Scholar
  12. Du, D., Zuo, P.B., Zhang, X.X.: 2010, Interplanetary coronal mass ejections observed by Ulysses through its three solar orbits. Solar Phys. 262, 171 – 190. doi: 10.1007/s11207-009-9505-8. ADSCrossRefGoogle Scholar
  13. Ebert, R.W., McComas, D.J., Elliott, H.A., Forsyth, R.J., Gosling, J.T.: 2009, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J. Geophys. Res. 114, 1109. doi: 10.1029/2008JA013631. CrossRefGoogle Scholar
  14. Everitt, B.S., Hand, D.J.: 1981, Finite Mixture Distributions 2, Chapman & Hall, London, 652 – 658. MATHCrossRefGoogle Scholar
  15. Faraway, J.J.: 2006, Extending Linear Models with r: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall/CRC, London. ISBN1-584-88424-X. http://www.maths.bath.ac.uk/~jjf23/ELM/. MATHGoogle Scholar
  16. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145 – 168. doi: 10.1007/s11214-006-9102-1. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N.: 2010, Corona mass ejections: A summary of recent results. In: Dorotovic, I. (ed.) 20th National Solar Physics Meeting, 108 – 130. Google Scholar
  18. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Boueret, J.L.: 2001, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548(1), L91 – L94. ADSCrossRefGoogle Scholar
  19. Hammond, C.M., Crawford, G.K., Gosling, J.T., Kojima, H., Phillips, J.L., Matsumoto, H., Balogh, A., Frank, L.A., Kokubun, S., Yamamoto, T.: 1995, Latitudinal structure of a coronal mass ejection inferred from Ulysses and Geotail observations. Geophys. Res. Lett. 22(10), 1169 – 1172. ADSCrossRefGoogle Scholar
  20. Hosmer, D., Lemeshow, S.: 2000, Applied Logistic Regression, Wiley Series in Probability and Statistics: Texts and References Section, Wiley, New York. ISBN9780471356325. MATHCrossRefGoogle Scholar
  21. Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177 – 13200. ADSCrossRefGoogle Scholar
  22. Kallenrode, M.B., Wibberenz, G., Kunow, H., Müller-Mellin, R., Stolpovskii, V., Kontor, N.: 1993, Multi-spacecraft observations of particle events and interplanetary shocks during November/December 1982. Solar Phys. 147, 377 – 410. doi: 10.1007/BF00690726. ADSCrossRefGoogle Scholar
  23. Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613 – 624. ADSCrossRefGoogle Scholar
  24. Lepri, S.T., Zurbuchen, T.H.: 2004, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109, 6101. doi: 10.1029/2003JA009954. CrossRefGoogle Scholar
  25. Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133 – L136. doi: 10.1086/587839. ADSCrossRefGoogle Scholar
  26. Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192 – 1206. doi: 10.1086/589738. ADSCrossRefGoogle Scholar
  27. Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments, in coronal mass ejections. In: Crooker, N.U., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington, 147. CrossRefGoogle Scholar
  28. McLachlan, G., Peel, D.: 2000, Finite Mixture Models 44, Wiley-Interscience, New York, 82. http://pubs.amstat.org/doi/abs/10.1198/tech.2002.s651. MATHCrossRefGoogle Scholar
  29. Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180 – L185. doi: 10.1088/0004-637X/705/2/L180. ADSCrossRefGoogle Scholar
  30. Odstrcil, D.: 2009, Numerical simulation of interplanetary disturbances. In: Pogorelov, N.V., Audit, E., Colella, P., Zank, G.P. (eds.) Numerical Modeling of Space Plasma Flows CS-406, Astron. Soc. Pac., San Francisco, 141 – 148. Google Scholar
  31. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes: The Art of Scientific Computing 29, Cambridge University Press, Cambridge 501. http://www.jstor.org/stable/1269484?origin=crossref. MATHGoogle Scholar
  32. Richardson, I.G., Cane, H.V.: 2004a, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, 9104. doi: 10.1029/2004JA010598. CrossRefGoogle Scholar
  33. Richardson, I.G., Cane, H.V.: 2004b, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, 18804. doi: 10.1029/2004GL020958. ADSCrossRefGoogle Scholar
  34. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys., 189 – 237. doi: 10.1007/s11207-010-9568-6.
  35. Richardson, I.G., Cane, H.V.: 2011, Identification of interplanetary coronal mass ejections at Ulysses using multiple solar wind signatures, and comparison with ICMEs observed at the Earth and in the inner heliosphere. AGU Fall Meeting Abstracts, SH31B – 1979. Google Scholar
  36. Riley, P., Linker, J.A., Mikić, Z., Odstrcil, D., Zurbuchen, T.H., Lario, D., Lepping, R.P.: 2003, Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft. J. Geophys. Res. 108, 1272. CrossRefGoogle Scholar
  37. Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321 – 1331. ADSCrossRefGoogle Scholar
  38. Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: Remote solar and in situ observations. Astrophys. J. 647, 648 – 653. doi: 10.1086/505383. ADSCrossRefGoogle Scholar
  39. Riley, P., Lionello, R., Mikić, Z., Linker, J.: 2008, Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys. J. 672, 1221 – 1227. doi: 10.1086/523893. ADSCrossRefGoogle Scholar
  40. Rodriguez, L., Zhukov, A.N., Dasso, S., Mandrini, C.H., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Aran, A., Menvielle, M., Poedts, S., Schmieder, B.: 2008, Magnetic clouds seen at different locations in the heliosphere. Ann. Geophys. 26, 213 – 229. doi: 10.5194/angeo-26-213-2008. ADSCrossRefGoogle Scholar
  41. Schieb, P.A.: 2011, Geomagnetic storms. Technical report. http://www.oecd.org/dataoecd/57/25/46891645.pdf.
  42. Taylor, J.B.: 1974, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139 – 1141. doi: 10.1103/PhysRevLett.33.1139. ADSCrossRefGoogle Scholar
  43. Tousey, R.: 1973, First results from Skylab. Bull. Am. Astron. Soc. 5, 419. ADSGoogle Scholar
  44. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. doi: 10.1007/s11214-006-9010-4. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Predictive Science, Inc.San DiegoUSA
  2. 2.Astroparticle Physics Laboratory, Code 661NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.CRESST and Department of AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations