Solar Physics

, Volume 278, Issue 1, pp 177–185 | Cite as

Coronal Seismology Using Transverse Oscillations of Non-planar Coronal Loops



We continue studying the robustness of coronal seismology. We concentrate on two seismological applications: the estimate of coronal scale height using the ratio of periods of the fundamental harmonic and first overtone of kink oscillations, and the estimate of magnetic-field magnitude using the fundamental harmonic. Our analysis is based on the model of non-planar coronal loops suggested by Ruderman and Scott (Astron. Astrophys. 529, A33, 2011), which was formulated using the linearized MHD equations. We show that the loop non-planarity does not affect the ratio of periods of the fundamental harmonic and first overtone, and thus it is unimportant for the estimates of the coronal scale height. We also show that the density variation along the loop and the loop non-planarity only weakly affect the estimates of the magnetic-field magnitude. Hence, using the simplest model of coronal loops, which is a straight homogeneous magnetic cylinder, provides sufficiently accurate estimates for the magnetic-field magnitude.


Coronal seismology Magnetic fields Oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andries, J., Arregui, I., Goossens, M.: 2005, Astrophys. J. Lett. 624, L57. ADSCrossRefGoogle Scholar
  2. Aschwanden, M.J.: 2009, Space Sci. Rev. 149, 31. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Astrophys. J. 520, 880. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J., Wülser, J.P., Nitta, N.V., Lemen, J.R.: 2008, Astrophys. J. 679, 827. ADSCrossRefGoogle Scholar
  5. Dymova, M., Ruderman, M.S.: 2005, Solar Phys. 229, 79. ADSCrossRefGoogle Scholar
  6. Dymova, M., Ruderman, M.S.: 2006, Astron. Astrophys. 459, 241. ADSCrossRefGoogle Scholar
  7. Edwin, P.M., Roberts, B.: 1983, Solar Phys. 88, 179. ADSCrossRefGoogle Scholar
  8. McEwan, M.P., Donelly, G.R., Diaz, A.J., Roberts, B.: 2006, Astron. Astrophys. 460, 893. ADSMATHCrossRefGoogle Scholar
  9. Morton, R.J., Erdélyi, R.: 2009, Astron. Astrophys. 502, 315. ADSMATHCrossRefGoogle Scholar
  10. Morton, R.J., Ruderman, M.S.: 2011, Astron. Astrophys. 527, A53. ADSCrossRefGoogle Scholar
  11. Nakariakov, V., Ofman, L.: 2001, Astron. Astrophys. 372, L53. ADSCrossRefGoogle Scholar
  12. Nakariakov, V., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862. ADSCrossRefGoogle Scholar
  13. Roberts, B., Edwin, P.M., Benz, A.O.: 1984, Astrophys. J. 279, 857. ADSCrossRefGoogle Scholar
  14. Robertson, D., Ruderman, M.S., Taroyan, Y.: 2010, Astron. Astrophys. 515, A33. ADSCrossRefGoogle Scholar
  15. Ruderman, M.S., Scott, A.: 2011, Astron. Astrophys. 529, A33. ADSCrossRefGoogle Scholar
  16. Ruderman, M.S., Verth, G., Erdélyi, R.: 2008, Astrophys. J. 686, 694. ADSCrossRefGoogle Scholar
  17. Uchida, Y.: 1970, Publ. Astron. Soc. Japan 22, 341. ADSGoogle Scholar
  18. Verth, G., Erdélyi, R., Jess, D.B.: 2008, Astrophys. J. Lett. 687, L45. ADSCrossRefGoogle Scholar
  19. Verwichte, T., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Solar Phys. 223, 77. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Solar Physics and Space Plasma Research Centre (SP²RC), School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK

Personalised recommendations