Solar Physics

, Volume 277, Issue 2, pp 245–266

The Solar Spectral Irradiance as a Function of the Mg ii Index for Atmosphere and Climate Modelling

  • G. Thuillier
  • M. DeLand
  • A. Shapiro
  • W. Schmutz
  • D. Bolsée
  • S. M. L. Melo


We present a new method to reconstruct the solar spectrum irradiance in the Ly α – 400 nm region, and its variability, based on the Mg ii index and neutron-monitor measurements. Measurements of the solar spectral irradiance available in the literature have been made with different instruments at different times and different spectral ranges. However, climate studies require harmonised data sets. This new approach has the advantage of being independent of the absolute calibration and aging of the instruments. First, the Mg ii index is derived using solar spectra from Ly α (121 nm) to 410 nm measured from 1978 to 2010 by several space missions. The variability of the spectra with respect to a chosen reference spectrum as a function of time and wavelength is scaled to the derived Mg ii index. The set of coefficients expressing the spectral variability can be applied to the chosen reference spectrum to reconstruct the solar spectra within a given time frame or Mg ii index values. The accuracy of this method is estimated using two approaches: direct comparison with particular cases where solar spectra are available from independent measurements, and calculating the standard deviation between the measured spectra and their reconstruction. From direct comparisons with measurements we obtain an accuracy of about 1 to 2%, which degrades towards Ly α. In a further step, we extend our solar spectral-irradiance reconstruction back to the Maunder Minimum introducing the relationship between the Mg ii index and the neutron-monitor data. Consistent measurements of the Mg ii index are not available prior to 1978. However, we remark that over the last three solar cycles, the Mg ii index shows strong correlation with the modulation potential determined from the neutron-monitor data. Assuming that this correlation can be applied to the past, we reconstruct the Mg ii index from the modulation potential back to the Maunder Minimum, and obtain the corresponding solar spectral-irradiance reconstruction back to that period. As there is no direct measurement of the spectral irradiance for this period we discuss this methodology in light of the other proposed approaches available in the literature. The use of the cosmogenic-isotope data provides a major advantage: it provides information about solar activity over several thousands years. Using technology of today, we can calibrate the solar irradiance against activity and thus reconstruct it for the times when cosmogenic-isotope data are available. This calibration can be re-assessed at any time, if necessary.


Solar spectrum reconstruction Mg ii index Neutron monitor ATLAS SOLSPEC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., et al.: 2008, Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res. 113, D11306. doi:10.1029/2007JD009391. ADSCrossRefGoogle Scholar
  2. Avrett, E.H.: 1992, In: Donnelly, R.F. (ed.) Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, National Technical Information Service, Springfield, 20. Google Scholar
  3. Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S., Harder, J.W.: 2011, Astron. Astrophys. 530, A71. doi:10.1051/0004-6361/201016189. ADSCrossRefGoogle Scholar
  4. Bolduc, C., Charbonneau, P., Bourqui, M.S., Crouch, A.D.: 2012, Solar Phys. submitted. Google Scholar
  5. Busá, I., Andretta, V., Gomez, M.T., Terranegra, L.: 2001, Astron. Astrophys. 373, 993. ADSCrossRefGoogle Scholar
  6. Castagnoli, G., Lal, D.: 1980, Radiocarbon 22, 133. Google Scholar
  7. Cebula, R.P., DeLand, M.T.: 1998, Solar Phys. 177, 117. ADSCrossRefGoogle Scholar
  8. DeLand, M.T., Cebula, R.P.: 1993, J. Geophys. Res. 98, 12809. ADSCrossRefGoogle Scholar
  9. DeLand, M.T., Cebula, R.P.: 2008, J. Geophys. Res. 113, A11103. doi:10.1029/2008JA013401. ADSCrossRefGoogle Scholar
  10. Donnelly, R.F., White, O.R., Livingston, W.C.: 1994, Solar Phys. 152, 69. doi:10.1007/BF01473185. ADSCrossRefGoogle Scholar
  11. Egorova, T., Rozanov, E., Hochedez, J.-F., Schmutz, W.: 2008, Atmos. Chem. Phys. 8, 2965. ADSCrossRefGoogle Scholar
  12. Fontenla, J.M., Avrett, E., Thuillier, G., Harder, J.: 2006, Astrophys. J. 63, 441. doi:10.1086/499345. ADSCrossRefGoogle Scholar
  13. Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, Astron. Astrophys. 492, 833. ADSCrossRefGoogle Scholar
  14. Haigh, J.D., Winning, A.R., Tourmi, R., Harder, J.D.: 2010, Nature 467, 696. ADSCrossRefGoogle Scholar
  15. Harder, J.W., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Geophys. Res. Lett. 36, LO7801. CrossRefGoogle Scholar
  16. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, Solar Phys. 263, 3. ADSCrossRefGoogle Scholar
  17. Heath, D., Schlesinger, B.M.: 1986, J. Geophys. Res. 91, 8672. ADSCrossRefGoogle Scholar
  18. IPCC, Climate Change: 2007, In: Solomon, S., et al. (eds.) The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge. Google Scholar
  19. Krivova, N.A., Solanki, S.K., Wenzler, T., Podlipnik, B.: 2009, J. Geophys. Res. 114, D00I04. doi:10.1029/2009JD012375 CrossRefGoogle Scholar
  20. Krivova, N.A., Vieira, L.E.A., Solanki, S.K.: 2010, J. Geophys. Res. 115, A12112. doi:10.1029/2010JA015431. ADSCrossRefGoogle Scholar
  21. Kurucz, R.L.: 2005, Mem. Soc. Astron. Ital. Suppl. 8, 86. ADSGoogle Scholar
  22. Lean, J.: 2000, Geophys. Res. Lett. 27, 2425. ADSCrossRefGoogle Scholar
  23. Lean, J.L., Livingston, W.C., Heath, D.F., Donnelly, R.F., Skumanich, A., White, O.R.: 1982, J. Geophys. Res. 87, 10307. doi:10.1029/JA087iA12p10307. ADSCrossRefGoogle Scholar
  24. Lean, J.L., Vanhoosier, M., Brueckner, G., Prinz, D.: 1992, Geophys. Res. Lett. 19, 2203 – 2206. doi:10.1029/92GL02656. ADSCrossRefGoogle Scholar
  25. Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, Solar Phys. 230, 27. ADSCrossRefGoogle Scholar
  26. Lockwood, M.: 2011, J. Geophys. Res. 116, D16103. doi:10.1029/2010JD014746. ADSCrossRefGoogle Scholar
  27. Lockwood, M., Stamper, R., Wild, M.N.: 1999, Nature 399, 437. ADSCrossRefGoogle Scholar
  28. McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, J. Geophys. Res. 109, 12103. CrossRefGoogle Scholar
  29. Neupert, W.M.: 1998, Solar Phys. 177, 181. ADSCrossRefGoogle Scholar
  30. Rottman, G.J., Woods, T.N., Snow, M., de Toma, G.: 2001, Adv. Space Res. 27, 1927. ADSCrossRefGoogle Scholar
  31. Schmidtke, G., Brunner, R., Eberhard, D., Halford, B., Klocke, U., Knothe, M., Konz, W., Riedel, W.-J., Wolf, H.: 2006, Adv. Space Res. 37, 273. ADSCrossRefGoogle Scholar
  32. Schrijver, C.J., Livingston, W.C., Woods, T.N., Mewaldt, R.A.: 2011, Geophys. Res. Lett. 38, L06701. doi:10.1029/2011GL046658. CrossRefGoogle Scholar
  33. Semeniuk, K., Fomichev, V.I., McConnell, J.C., Fu, C., Melo, S.M.L., Usoskin, I.G.: 2010, Atmos. Chem. Phys. Discuss. 10, 24853. doi:10.5194/acpd-10-24853. ADSCrossRefGoogle Scholar
  34. Shapiro, A., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, Astron. Astrophys. 517A, 48S. ADSCrossRefGoogle Scholar
  35. Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., Nyeki, S.: 2011a, Astron. Astrophys. 529, A67. ADSCrossRefGoogle Scholar
  36. Shapiro, A.V., Rozanov, E., Egorova, T., Shapiro, A.I., Peter, T., Schmutz, W.: 2011b, J. Atmos. Solar-Terr. Phys. 73(2), 348. CrossRefGoogle Scholar
  37. Short, C.I., Hauschildt, P.H.: 2009, Astrophys. J. 691, 1634. ADSCrossRefGoogle Scholar
  38. Snow, M., McClintock, W.E., Woods, T.N.: 2010, Adv. Space Res. 46, 296. ADSCrossRefGoogle Scholar
  39. Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., Plattner, G.-K.: 2010, Science 327, 1219. doi:10.1126/science.1182488. ADSCrossRefGoogle Scholar
  40. Steinhilber, F., Beer, J., Fröhlich, C.: 2009, Geophys. Res. Lett. 36, L19704. doi:10.1029/2009GL040142. ADSCrossRefGoogle Scholar
  41. Tapping, K.F.: 1987, J. Geophys. Res. 92(D1), 829. ADSCrossRefGoogle Scholar
  42. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, In: Pap, J., Fox, P. (eds.) Solar Variability and Its Effect on Climate 141, AGU, Washington, 171. CrossRefGoogle Scholar
  43. Thuillier, G., Claudel, J., Djafer, D., Haberreiter, M., Mein, N., Melo, S.M.L., Schmutz, W., Shapiro, A., Short, C.I., Sofia, S.: 2011, Solar Phys. 268, 125. ADSCrossRefGoogle Scholar
  44. Thuillier, G., Bolsée, D., Foujols, T., Schmidtke, G., Nikutowski, B., Brunner, R., Hersé, M., Gillotay, D., Mandel, H., Petermanns, W., Decuyper, W.: 2012, Solar Phys. in preparation. Google Scholar
  45. Usoskin, I.G., Alanko-Huotari, K., Kovaltsov, G.A., Mursula, K.: 2005, J. Geophys. Res. 110, A12108. doi:10.1029/2005JA011250. ADSCrossRefGoogle Scholar
  46. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, Space Weather 2, S10005. doi:10.1029/2004SW000084. ADSCrossRefGoogle Scholar
  47. White, O.R., Livingston, W.C., Kiel, S.L.: 1992, In: Donnelly, R.F. (ed.) Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, National Technical Information Service, Springfield, 160. Google Scholar
  48. Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: 2000, J. Geophys. Res. 105, A12. doi:10.1029/2000JA000051. CrossRefGoogle Scholar
  49. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Geophys. Res. Lett. 36, L01101. doi:10.1029/2008GL036373. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • G. Thuillier
    • 1
  • M. DeLand
    • 2
  • A. Shapiro
    • 3
  • W. Schmutz
    • 3
  • D. Bolsée
    • 4
  • S. M. L. Melo
    • 5
  1. 1.LATMOS-CNRSGuyancourtFrance
  2. 2.SSAILanhamUSA
  3. 3.PMOD-WRCDavosSwitzerland
  4. 4.Solar-Terrestrial Centre of Excellence-BIRA-IASBBruxellesBelgium
  5. 5.Canadian Space AgencySaint-HubertCanada

Personalised recommendations