Advertisement

Solar Physics

, Volume 277, Issue 2, pp 299–316 | Cite as

Magnetic Relaxation and Particle Acceleration in a Flaring Twisted Coronal Loop

  • M. GordovskyyEmail author
  • P. K. Browning
Article

Abstract

In the present work we aim to study particle acceleration in twisted coronal loops. For this purpose, an MHD model of magnetic reconnection in a linearly unstable twisted magnetic fluxtube is considered. Further, the electric and magnetic fields obtained in the MHD simulations are used to calculate proton and electron trajectories in the guiding-centre approximation. It is shown that particle acceleration in such a model is distributed rather uniformly along the coronal loop and the high-energy population remains generally neutral. It also follows from the model that the horizontal cross-section of the volume occupied by high-energy particles near the loop footpoints increases with time, which can be used as an observational proxy.

Keywords

Energetic particles, acceleration Flares, energetic particles Magnetic reconnection, theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber, T.D., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, J. Comput. Phys. 171, 151. MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Aschwanden, M.J., Wuesler, J.P., Nitta, N.V., Lemen, J.R.: 2009, Solar Phys. 256, 3. ADSCrossRefGoogle Scholar
  3. Barta, M., Buchner, J., Karlicky, M., Skala, J.: 2011, Astrophys. J. 737, 24. ADSCrossRefGoogle Scholar
  4. Baty, H.: 2000, Astron. Astrophys. 353, 1074. ADSGoogle Scholar
  5. Baty, H., Heyvaerts, J.: 1996, Astron. Astrophys. 308, 935. ADSGoogle Scholar
  6. Brown, J.C., Turkmani, R., Kontar, E.P., MacKinnon, A.L., Vlahos, L.: 2009, Astron. Astrophys. 508, 993. ADSCrossRefGoogle Scholar
  7. Browning, P.K., Van der Linden, R.A.M.: 2008, Astron. Astrophys. 400, 355. ADSCrossRefGoogle Scholar
  8. Browning, P.K., Gerrard, C., Hood, A.W., Kevis, R., van der Linden, R.A.M.: 2008, Astron. Astrophys. 485, 837. ADSzbMATHCrossRefGoogle Scholar
  9. Buchner, J.: 2000, Space Sci. Rev. 124, 345. ADSCrossRefGoogle Scholar
  10. Diakonov, S.V., Somov, B.V.: 1988, Solar Phys. 116, 119. ADSCrossRefGoogle Scholar
  11. Drake, J.F., Swisdak, M., Schoeffler, K.M., Rogers, B.N., Kobayashi, S.: 2006, Geophys. Res. Lett. 33, 13105. ADSCrossRefGoogle Scholar
  12. Galsgaard, K., Nordlund, A.: 1996, J. Geophys. Res. 101, 13445. ADSCrossRefGoogle Scholar
  13. Gordovskyy, M., Browning, P.K.: 2010, Astrophys. J. 729, 101. ADSCrossRefGoogle Scholar
  14. Gordovskyy, M., Browning, P.K., Vekstein, G.E.: 2010a, Astron. Astrophys. 519, A21. ADSCrossRefGoogle Scholar
  15. Gordovskyy, M., Browning, P.K., Vekstein, G.E.: 2010b, Astrophys. J. 720, 1603. ADSCrossRefGoogle Scholar
  16. Hood, A.W., Browning, P.K., van der Linden, R.A.M.: 2009, Astron. Astrophys. 506, 913. ADSCrossRefGoogle Scholar
  17. Knight, J.W., Sturrock, P.A.: 1977, Astrophys. J. 218, 306. ADSCrossRefGoogle Scholar
  18. Kuznetsova, M., Hesse, M., Winske, D.: 2000, J. Geophys. Res. 105, 7601. ADSCrossRefGoogle Scholar
  19. Northrop, T.: 1963, The Adiabatic Motion of Charged Particles, Interscience, New York, 32. zbMATHGoogle Scholar
  20. Sergeev, V.A., Mitchell, D.G., Russell, C.T., Williams, D.J.: 1993, J. Geophys. Res. 98, 17345. ADSCrossRefGoogle Scholar
  21. Turkmani, R., Cargill, P.J., Galsgaard, K., Vlahos, L., Isliker, H.: 2006, Astron. Astrophys. 449, 749. ADSCrossRefGoogle Scholar
  22. Wood, P., Neukirch, T.: 2005, Solar Phys. 226, 73. ADSCrossRefGoogle Scholar
  23. Zharkova, V.V., Gordovskyy, M.: 2005, Astron. Astrophys. 432, 1033. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Jodrell Bank Centre for AstrophysicsUniversity of ManchesterManchesterUK

Personalised recommendations