Solar Physics

, Volume 276, Issue 1–2, pp 293–314 | Cite as

Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures

  • T. RollettEmail author
  • C. Möstl
  • M. Temmer
  • A. M. Veronig
  • C. J. Farrugia
  • H. K. Biernat


We present a new approach to combine remote observations and in-situ data by STEREO/HI and Wind, respectively, to derive the kinematics and propagation directions of interplanetary coronal mass ejections (ICMEs). We use two methods, Fixed-ϕ (Fϕ) and Harmonic Mean (HM), to convert ICME elongations into distance, and constrain the ICME direction such that the ICME distance–time and velocity–time profiles are most consistent with in-situ measurements of the arrival time and velocity. The derived velocity–time functions from the Sun to 1 AU for the three events under study (1 – 6 June 2008, 13 – 18 February 2009, 3 – 5 April 2010) do not show strong differences for the two extreme geometrical assumptions of a wide ICME with a circular front (HM) or an ICME of small spatial extent in the ecliptic (Fϕ). Due to the geometrical assumptions, HM delivers the propagation direction further away from the observing spacecraft with a mean difference of ≈ 25°.


Arrival Time Coronal Mass Ejection Solar Phys Propagation Angle Interplanetary Coronal Mass Ejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York. Google Scholar
  2. Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307 – 322. doi: 10.1051/0004-6361:20035776. ADSCrossRefGoogle Scholar
  3. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., Davis, C.J., Eyles, C.J., Crothers, S.R., Brown, D.S.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett. 36, L02102. doi: 10.1029/2008GL036182. CrossRefGoogle Scholar
  4. Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387 – 445. doi: 10.1007/s11207-008-9299-0. ADSCrossRefGoogle Scholar
  5. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J.A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L.M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R.F., Koeten, M., Thompson, B., Steinfeld, D.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437 – 486. doi: 10.1007/s11214-007-9296-x. ADSCrossRefGoogle Scholar
  6. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207 – 29218. doi: 10.1029/2001JA000177. ADSCrossRefGoogle Scholar
  7. Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1974, Mass ejections from the Sun – A view from SKYLAB. J. Geophys. Res. 79, 4581 – 4587. doi: 10.1029/JA079i031p04581. ADSCrossRefGoogle Scholar
  8. Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Invited Review. Solar Phys. 256, 219 – 237. doi: 10.1007/s11207-009-9352-7. ADSCrossRefGoogle Scholar
  9. Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31 – 54. doi: 10.1007/s11214-009-9542-5. ADSCrossRefGoogle Scholar
  10. Howard, T.A., Webb, D.F., Tappin, S.J., Mizuno, D.R., Johnston, J.C.: 2006, Tracking halo coronal mass ejections from 0 – 1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI). J. Geophys. Res. 111, 4105. doi: 10.1029/2005JA011349. CrossRefGoogle Scholar
  11. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4. ADSCrossRefGoogle Scholar
  12. Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984-1989. J. Geophys. Res. 981, 13177. doi: 10.1029/93JA00157. ADSCrossRefGoogle Scholar
  13. Hundhausen, A.J.: 1997, Coronal mass ejections. In: Jokipii, J.R., Sonett, C.P., Giampapa, M.S. (eds.) Cosmic Winds and the Heliosphere, University of Arizona, Tucson, 259. Google Scholar
  14. Kahler, S.W., Webb, D.F.: 2007, V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager. J. Geophys. Res. 112, 9103. doi: 10.1029/2007JA012358. CrossRefGoogle Scholar
  15. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  16. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703, L118 – L122. doi: 10.1088/0004-637X/703/2/L118. ADSCrossRefGoogle Scholar
  17. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82 – L87. doi: 10.1088/2041-8205/710/1/L82. ADSCrossRefGoogle Scholar
  18. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi: 10.1088/0004-637X/722/2/1762. ADSCrossRefGoogle Scholar
  19. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: A comprehensive view. Astrophys. J. 734, 84 – 97. doi: 10.1088/0004-637X/734/2/84. ADSCrossRefGoogle Scholar
  20. Lugaz, N.: 2010, Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Solar Phys. 267, 411 – 429. doi: 10.1007/s11207-010-9654-9. ADSCrossRefGoogle Scholar
  21. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Ann. Geophys. 27, 3479 – 3488. ADSCrossRefGoogle Scholar
  22. Lugaz, N., Roussev, I.I., Gombosi, T.I.: 2011, Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods. Adv. Space Res. 48, 292 – 299. doi: 10.1016/j.asr.2011.03.015. ADSCrossRefGoogle Scholar
  23. Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493 – 499. doi: 10.1088/0004-637X/715/1/493. ADSCrossRefGoogle Scholar
  24. Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115, A07106. doi: 10.1029/2009JA015099. CrossRefGoogle Scholar
  25. Miklenic, C., Veronig, A.M., Temmer, M., Möstl, C., Biernat, H.K.: 2011, Coronal dimmings and the early phase of a CME observed with STEREO and Hinode/EIS. Solar Phys. 273, 125 – 142. doi: 10.1007/s11207-011-9852-0. ADSCrossRefGoogle Scholar
  26. Morrill, J.S., Howard, R.A., Vourlidas, A., Webb, D.F., Kunkel, V.: 2009, The impact of geometry on observations of CME brightness and propagation. Solar Phys. 259, 179 – 197. doi: 10.1007/s11207-009-9403-0. ADSCrossRefGoogle Scholar
  27. Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180 – L185. doi: 10.1088/0004-637X/705/2/L180. ADSCrossRefGoogle Scholar
  28. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 372, L24103. doi: 10.1029/2010GL045175. CrossRefGoogle Scholar
  29. Möstl, C., Rollett, T., Lugaz, N., Farrugia, C.J., Davies, J.A., Temmer, M., Veronig, A.M., Harrison, R.A., Crothers, S., Luhmann, J.G., Galvin, A.B., Zhang, T.L., Baumjohann, W., Biernat, H.K.: 2011, Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J. 741, 34. doi: 10.1088/0004-637X/741/1/34. ADSCrossRefGoogle Scholar
  30. Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497 – 506. doi: 10.1016/S0273-1177(03)00332-6. ADSCrossRefGoogle Scholar
  31. Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Solar Phys. 259, 297 – 309. doi: 10.1007/s11207-009-9449-z. ADSCrossRefGoogle Scholar
  32. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55 – 77. ADSCrossRefGoogle Scholar
  33. Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: First quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182 – L186. doi: 10.1088/0004-637X/700/2/L182. ADSCrossRefGoogle Scholar
  34. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283 – 291. doi: 10.1088/0004-637X/701/1/283. ADSCrossRefGoogle Scholar
  35. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, 10110. doi: 10.1029/2008GL033767. ADSCrossRefGoogle Scholar
  36. Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739 – 24768. doi: 10.1029/1999JA900308. ADSCrossRefGoogle Scholar
  37. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vrsnak, B., Odstrcil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary CMEs. Astrophys. J. 743, 101 – 113. arXiv:1110.0827. ADSCrossRefGoogle Scholar
  38. Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: A new methodology and implications for observations. Astrophys. J. 642, 1216 – 1221. doi: 10.1086/501122. ADSCrossRefGoogle Scholar
  39. Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524 – 1532. doi: 10.1088/0004-637X/715/2/1524. ADSCrossRefGoogle Scholar
  40. Wood, B.E., Howard, R.A., Plunkett, S.P., Socker, D.G.: 2009, Comprehensive observations of a solar minimum coronal mass ejection with the Solar Terrestrial Relations Observatory. Astrophys. J. 694, 707 – 717. doi: 10.1088/0004-637X/694/2/707. ADSCrossRefGoogle Scholar
  41. Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P.: 2011, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys. J. 729, 70 – 80. doi: 10.1088/0004-637X/729/1/70. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • T. Rollett
    • 1
    • 2
    Email author
  • C. Möstl
    • 1
    • 2
  • M. Temmer
    • 1
    • 2
  • A. M. Veronig
    • 1
  • C. J. Farrugia
    • 3
  • H. K. Biernat
    • 1
    • 2
  1. 1.Institute of PhysicsUniversity of GrazGrazAustria
  2. 2.Space Research InstituteAustrian Academy of SciencesGrazAustria
  3. 3.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA

Personalised recommendations