Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent Developments of NEMO: Detection of EUV Wave Characteristics

Abstract

Recent developments in space instrumentation for solar observations and increased telemetry have necessitated the creation of advanced pattern recognition tools for different classes of solar events. The Extreme Ultraviolet Imaging Telescope (EIT) onboard the SOHO spacecraft has uncovered a new class of eruptive events on the solar disk, which are often identified as signatures of the initiation of coronal mass ejections (CMEs). The development of an automatic detection tool of these signatures is an important task. The Novel EIT Wave Machine Observing (NEMO) code ( http://sidc.be/nemo ) is an operational tool that automatically detects EUV waves using a sequence of EUV images. NEMO applies techniques based on the general statistical properties of the underlying physical mechanisms of eruptive events. Originally, the technique was applied to images taken with the EIT telescope. In this work, the most recent updates of the NEMO code are presented. These updates include calculations of the area of the dimming region, a novel clustering technique for the extraction of dimming regions, and new criteria to identify eruptive dimmings based on their complex characteristics. The efficiency of NEMO has been significantly increased and now permits the extraction of dimming regions observed near the solar limb and also the detection of small-scale events. Furthermore, the catalogs of solar eruptive events based on the updated NEMO may include a larger number of physical parameters associated with the dimming regions.

This is a preview of subscription content, log in to check access.

References

  1. Attrill, G., Nakwacki, M.S., Harra, L.K., van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J.: 2006, Using the evolution of coronal dimming regions to probe the global magnetic field topology. Solar Phys. 238, 117 – 139.

  2. Attrill, G.D.R., Wills-Davey, M.J.: 2010, Automatic detection and extraction of coronal dimmings from SDO/AIA data. Solar Phys. 262, 461 – 480.

  3. Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478, 897 – 906.

  4. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EUV waves”. Astrophys. J. 569, 1009 – 1015.

  5. de Patoul, J., Berghmans, D., Nicula, B., Podladchikova, O.: 2008, Solar flare detector for EUV images. In: Irland, J., Young, C., Delouille, V. (eds.) Solar Image Processing Workshop IV, 10.

  6. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H, Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291 – 312.

  7. Fillipov, B.P.: 2007, Physics of the Solar Corona: An Introduction, Fundamental and Applied Physics, Fizmatlit, Moscow, 1 – 335.

  8. Gao, J., Wang, H., Zhou, M.: 2002, Development of an automatic filament disappearance detection system. Solar Phys. 205, 93 – 103.

  9. Gopalswamy, N.: 2004, A global picture of CMEs in the inner heliosphere. In: Poletto, G., Suess, S. T. (eds.) The Sun and the Heliosphere as an Integrated System, Kluwer Academic, Dordrecht, 201 – 217.

  10. Gosling, J.T., Thomsen, M.F., Bame, S.J., Russell, C.T.: 1990, Cold ion beams in the low latitude boundary layer during accelerated flow events. Geophys. Res. Lett. 17, 2245 – 2248.

  11. Harra, L.K., Sterling, A.C.: 2001, Material outflows from coronal intensity “dimming regions” during coronal mass ejection onset. Astrophys. J. Lett. 561, L215 – L218.

  12. Innes, D.E., McIntosh, S.W., Pietarila, A.: 2010, STEREO quadrature observations of coronal dimming at the onset of mini-CMEs. Astron. Astrophys. 517, L7.

  13. Innes, D.E., Genetelli, A., Attie, R., Potts, H.E.: 2009, Quiet Sun mini-coronal mass ejections activated by supergranular flows. Astron. Astrophys. 495, 319 – 323.

  14. Kahler, S.W.: 1992, Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 30, 113 – 141.

  15. Martens, P.C.H., Attrill, G.D.R., Davey, A.R., Engell, A., Farid, S., Grigis, P.C., et al.: 2011, Computer vision for the Solar Dynamics Observatory (SDO). Solar Phys. doi: 10.1007/s11207-010-9697-y .

  16. Plunkett, S.P., Thompson, B.J., Howard, R.A., Michels, D.J., St. Cyr, O.C., Tappin, S.J., Schwenn, R., Lamy, P.L.: 1998, LASCO observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2477 – 2480.

  17. Podladchikova, O., Berghmans, D.: 2005, Automated detection of EIT waves and dimmings, Solar Phys. 228, 265 – 284.

  18. Podladchikova, O., Vourlidas, A., Van der Linden, R.A.M., Wülser, J., Patsourakos, S.: 2010, Extreme ultraviolet observations and analysis of micro-eruptions and their associated coronal waves. Astrophys. J. 709, 369 – 376.

  19. Richardson, I.G., Cliver, E.W., Cane, H.V.: 2001, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972 – 2000. Geophys. Res. Lett. 28, 2569 – 2572.

  20. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097 – 1106.

  21. Robbrecht, E., Berghmans, D.: 2005, Entering the era of automated CME recognition: A review of existing tools. Solar Phys. 228, 239 – 251.

  22. Sandberg, I., Benkadda, S., Garbet, X., Ropokis, G., Hizanidis, K., del-Castillo-Negrete, D.: 2009, Universal probability distribution function for bursty transport in plasma turbulence. Phys. Rev. Lett. 103, 165001.

  23. Slemzin, V., Kuzin, S., Bogachev, S.: 2005, Temporal and spatial dynamics of CME-related solar structures from EUV observations with the Coronas-F and SOHO/EIT telescopes. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) The Dynamic Sun: Challenges for Theory and Observations, ESA SP-600, 166.1 (on CDROM).

  24. Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EUV wave” transients. Astrophys. J. Suppl. 183, 225 – 243.

  25. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465 – 2468.

  26. Zhukov, A.N.: 2004, Initiation of CMEs: EIT waves and EUV dimmings. In: Sakurai, T., Sekii, T. (eds.) The Solar-B Mission and the Forefront of Solar Physics, ASP Conf. Ser. 325, 381 – 388.

  27. Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716.

Download references

Author information

Correspondence to O. Podladchikova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Podladchikova, O., Vuets, A., Leontiev, P. et al. Recent Developments of NEMO: Detection of EUV Wave Characteristics. Sol Phys 276, 479–490 (2012). https://doi.org/10.1007/s11207-011-9894-3

Download citation

Keywords

  • Corona
  • Coronal mass ejections
  • Flares
  • Instrumentation and data management
  • Low coronal signatures