Advertisement

Solar Physics

, Volume 283, Issue 1, pp 143–156 | Cite as

Prediction of Extreme Ultraviolet Variability Experiment (EVE)/Extreme Ultraviolet Spectro-Photometer (ESP) Irradiance from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) Images Using Fuzzy Image Processing and Machine Learning

  • T. ColakEmail author
  • R. Qahwaji
IMAGE PROCESSING IN THE PETABYTE ERA

Abstract

The cadence and resolution of solar images have been increasing dramatically with the launch of new spacecraft such as STEREO and SDO. This increase in data volume provides new opportunities for solar researchers, but the efficient processing and analysis of these data create new challenges. We introduce a fuzzy-based solar feature-detection system in this article. The proposed system processes SDO/AIA images using fuzzy rules to detect coronal holes and active regions. This system is fast and it can handle different size images. It is tested on six months of solar data (1 October 2010 to 31 March 2011) to generate filling factors (ratio of area of solar feature to area of rest of the solar disc) for active regions and coronal holes. These filling factors are then compared to SDO/EVE/ESP irradiance measurements. The correlation between active-region filling factors and irradiance measurements is found to be very high, which has encouraged us to design a time-series prediction system using Radial Basis Function Networks to predict ESP irradiance measurements from our generated filling factors.

Keywords

Solar imaging SDO/AIA SDO/EVE Irradiance construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschwanden, M.J.: 2009, Solar Phys. 262(2), 235 – 275. ADSCrossRefGoogle Scholar
  2. Awad, M., Pomares, H., Rojas, I., Salameh, O., Hamdon, M.: 2009, Int. Arab J. Inf. Technol. 6(2), 138 – 143. Google Scholar
  3. Barra, V., Delouille, V., Hochedez, J.-F.: 2008, Adv. Space Res. 42, 917 – 925. ADSCrossRefGoogle Scholar
  4. Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.-F.: 2009, Astron. Astrophys. 505(5), 361 – 371. ADSCrossRefGoogle Scholar
  5. Bloch, I.: 1996, IEEE Trans. Syst. Man Cybern. 26(1), 52 – 67. ADSCrossRefGoogle Scholar
  6. Deng, Y., Manjunath, B.S.: 2001, IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800 – 810. CrossRefGoogle Scholar
  7. Didkovsky, L., Judge, D., Wieman, S., Woods, T., Jones, A.: 2009, Solar Phys. doi: 10.1007/s11207-009-9485-8.
  8. Lindeberg, T.: 1998, Int. J. Comput. Vis. 30(2), 117 – 154. CrossRefGoogle Scholar
  9. Moore, T.S., Campbell, J.W., Feng, H.: 2001, IEEE Trans. Geosci. Remote Sens. 39(8), 1764 – 1776. ADSCrossRefGoogle Scholar
  10. Qahwaji, R., Colak, T.: 2007, Solar Phys. 241(1), 195 – 211. ADSCrossRefGoogle Scholar
  11. Qu, M., Shih, F.Y., Jing, J., Wang, H.M.: 2003, Solar Phys. 217(1), 157 – 172. ADSCrossRefGoogle Scholar
  12. Revathy, K., Lekshmi, S.: 2005, Solar Phys. 228(1), 43 – 53. ADSCrossRefGoogle Scholar
  13. Sutton, R.S., Barto, A.G.: 1998, Reinforcement Learning: An Introduction, MIT Press, Cambridge. Google Scholar
  14. Tobias, O.J., Seara, R.: 2002, IEEE Trans. Image Process. 11(12), 1457 – 1465. ADSCrossRefGoogle Scholar
  15. Tobiska, W.K., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D., Rottman, G., White, O.R.: 2000, J. Atmos. Solar-Terr. Phys. 62(14), 1233 – 1250. ADSCrossRefGoogle Scholar
  16. Zadeh, L.A.: 1965, Inf. Control 8(3), 338 – 353. MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre for Visual ComputingUniversity of BradfordBradfordEngland, UK

Personalised recommendations