Advertisement

Solar Physics

, Volume 273, Issue 1, pp 231–253 | Cite as

The Shape of Solar Cycle Described by a Modified Gaussian Function

  • Zhanle Du
Article

Abstract

The shape of each sunspot cycle is found to be well described by a modified Gaussian function with four parameters: peak size A, peak timing t m, width B, and asymmetry α. The four-parameter function can be further reduced to a two-parameter function by assuming that B and α are quadratic functions of t m, computed from the starting time (T 0). It is found that the shape can be better fitted by the four-parameter function, while the remaining behavior of the cycle can be better predicted by the two-parameter function when using the data from a few (about two) months after the starting time defined by the smoothed monthly mean sunspot numbers. As a new solar cycle is ongoing, its remaining behavior can be constructed by the above four- or two-parameter function. A running test shows that the maximum amplitude of the cycle can be predicted to within 15% at about 25 months into the cycle based on the two-parameter function. A preliminary modeling to the first 24 months of data available for the current cycle indicates that the peak of cycle 24 may probably occur around June 2013±7 months with a size of 72±11. The above results are compared to those by quasi-Planck functions.

Keywords

Models Solar cycle Sunspots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron, R., Schüssler, M.: 2007, Astrophys. J. 659, 801. ADSCrossRefGoogle Scholar
  2. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Phys. Rev. Lett. 98, 131103. ADSCrossRefGoogle Scholar
  3. Cohen, T.J., Lintz, P.R.: 1974, Nature 250, 398. ADSCrossRefGoogle Scholar
  4. Cole, T.W.: 1973, Solar Phys. 30, 103. ADSCrossRefGoogle Scholar
  5. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Geophys. Res. Lett. 33, L05102. CrossRefGoogle Scholar
  6. Du, Z.L.: 2006, Astron. Astrophys. 457, 309. ADSCrossRefGoogle Scholar
  7. Du, Z.L.: 2011, Solar Phys. 270, 407. ADSCrossRefGoogle Scholar
  8. Du, Z., Du, S.: 2006, Solar Phys. 238, 431. ADSCrossRefGoogle Scholar
  9. Du, Z.L., Wang, H.N., He, X.T.: 2006, Chin. J. Astron. Astrophys. 6, 338. ADSCrossRefGoogle Scholar
  10. Du, Z.L., Wang, H.N., Zhang, L.Y.: 2009, Solar Phys. 255, 179. ADSCrossRefGoogle Scholar
  11. Elling, W., Schwentek, H.: 1992, Solar Phys. 137, 155. ADSCrossRefGoogle Scholar
  12. Gnevyshev, M.N., Ohl, A.I.: 1948, Astron. Zh. 25, 18. Google Scholar
  13. Hathaway, D.H.: 2010, Living Rev. Solar Phys. 7(1). Google Scholar
  14. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, Solar Phys. 151, 177. ADSCrossRefGoogle Scholar
  15. Hiremath, K.M.: 2008, Astrophys. Space Sci. 314, 45. ADSCrossRefGoogle Scholar
  16. Javaraiah, J.: 2005, Mon. Not. Roy. Astron. Soc. 362, 1311. ADSCrossRefGoogle Scholar
  17. Kane, R.P.: 2007, Solar Phys. 246, 487. ADSCrossRefGoogle Scholar
  18. Kane, R.P.: 2008, Ann. Geophys. 26, 3329. ADSCrossRefGoogle Scholar
  19. Kimura, H.: 1913, Mon. Not. Roy. Astron. Soc. 73, 543. ADSGoogle Scholar
  20. Li, K.J.: 1999, Astron. Astrophys. 345, 1006. ADSGoogle Scholar
  21. Nordemann, D.J.R.: 1992, Solar Phys. 141, 199. ADSCrossRefGoogle Scholar
  22. Nordemann, D.J.R., Trivedi, N.B.: 1992, Solar Phys. 142, 411. ADSCrossRefGoogle Scholar
  23. Obridko, V.N., Shelting, B.D.: 2008, Solar Phys. 248, 191. ADSCrossRefGoogle Scholar
  24. Ohl, A.I.: 1976, Soln. Dannye 9, 73. ADSGoogle Scholar
  25. Pesnell, W.D.: 2008, Solar Phys. 252, 209. ADSCrossRefGoogle Scholar
  26. Petrovay, K.: 2010, Living Rev. Solar Phys. 7(6). Google Scholar
  27. Sabarinath, A., Anilkumar, A.K.: 2008, Solar Phys. 250, 183. ADSCrossRefGoogle Scholar
  28. Schwabe, H.: 1844, Astron. Nachr. 21, 233. ADSCrossRefGoogle Scholar
  29. Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Geophys. Res. Lett. 5, 411. ADSCrossRefGoogle Scholar
  30. Stewart, J.Q., Panofsky, H.A.A.: 1938, Astrophys. J. 88, 385. ADSzbMATHCrossRefGoogle Scholar
  31. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32, L01104. CrossRefGoogle Scholar
  32. Thompson, R.J.: 1993, Solar Phys. 148, 383. ADSCrossRefGoogle Scholar
  33. Turner, H.H.: 1913, Mon. Not. Roy. Astron. Soc. 73, 714. ADSzbMATHGoogle Scholar
  34. Vitinskii, Yu.I.: 1965, Solar-Activity Forecasting, Israel Program for Scientific Translations Jerusalem, NASA-TT-F-289. Google Scholar
  35. Vitinskij, Yu.I., Kopetskij, M., Kuklin, G.V.: 1986, Statistics of Sunspot Activity, Nauka, Moscow, 296 (in Russian). Google Scholar
  36. Volobuev, D.M.: 2009, Solar Phys. 258, 319. ADSCrossRefGoogle Scholar
  37. Waldmeier, M.: 1935, Astron. Mitt. Zürich 14, 133. Google Scholar
  38. Waldmeier, M.: 1939, Astron. Mitt. Zürich 14, 439. ADSGoogle Scholar
  39. Wang, J.L., Miao, J., Liu, S.Q., Gong, J.C., Zhu, C.L.: 2008, Sci. China Ser. G 51, 1938. CrossRefGoogle Scholar
  40. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: 1998, J. Geophys. Res. 103, 6595. ADSCrossRefGoogle Scholar
  41. Wolf, R.: 1852, C. R. Acad. Sci. 35, 704. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Key Laboratory of Solar Activity, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina

Personalised recommendations