Solar Physics

, 272:301 | Cite as

Multiwavelength Observations of a Failed Flux Rope in the Eruption and Associated M-Class Flare from NOAA AR 11045

  • Pankaj Kumar
  • Ablishek K. Srivastava
  • B. Filippov
  • R. Erdélyi
  • Wahab Uddin


We present the multiwavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space-based and ground-based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT, and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered near one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ≈0.15R with a speed of ≈90 km s−1 while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field, and the filled plasma moved towards the negative polarity field to the west of its activation site. We found the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved a couple of days earlier at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ≈12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards the PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.


Flux rope Magnetic field Magnetic reconnection Solar flare – coronal loops 

Supplementary material

11207_2011_9829_MOESM1_ESM.avi (734 kb)
(AVI 734 KB)
11207_2011_9829_MOESM2_ESM.avi (103 kb)
(AVI 103 KB)
11207_2011_9829_MOESM3_ESM.avi (363 kb)
(AVI 363 KB)
11207_2011_9829_MOESM4_ESM.avi (482 kb)
(AVI 482 KB)
11207_2011_9829_MOESM5_ESM.avi (2.4 mb)
(AVI 2.37 MB)


  1. Alexander, D., Liu, R., Gilbert, H.R.: 2006, Hard X-ray production in a failed filament eruption. Astrophys. J. 653, 719 – 724. doi: 10.1086/508137. ADSCrossRefGoogle Scholar
  2. Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 2000, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett. 529, 49 – 52. doi: 10.1086/312444. ADSCrossRefGoogle Scholar
  3. Archontis, V., Hood, A.W., Brady, C.: 2007, Emergence and interaction of twisted flux tubes in the Sun. Astron. Astrophys. 466, 367 – 376. doi: 10.1051/0004-6361:20066508. ADSCrossRefGoogle Scholar
  4. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047 – 1063. doi: 10.1051/0004-6361:20035934. ADSCrossRefGoogle Scholar
  5. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A.W.: 2005, The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets. Astrophys. J. 635, 1299 – 1318. doi: 10.1086/497533. ADSCrossRefGoogle Scholar
  6. Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis Springer, Berlin. Google Scholar
  7. Bonet, J.A., Márquez, I., Sánchez Almeida, J., Cabello, I., Domingo, V.: 2008, Convectively driven vortex flows in the Sun. Astrophys. J. Lett. 687, 131 – 134. doi: 10.1086/593329. ADSCrossRefGoogle Scholar
  8. Fan, Y.: 2001, The emergence of a twisted Ω-tube into the solar atmosphere. Astrophys. J. Lett. 554, 111 – 114. doi: 10.1086/320935. ADSCrossRefGoogle Scholar
  9. Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, 105 – 108. doi: 10.1086/375834. ADSCrossRefGoogle Scholar
  10. Fan, Y., Gibson, S.E.: 2004, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123 – 1133. doi: 10.1086/421238. ADSCrossRefGoogle Scholar
  11. Fedun, V., Shelyag, S., Verth, G., Mathioudakis, M., Erdélyi, R.: 2011, MHD waves generated by high-frequency photospheric vortex motions. Ann. Geophys. 29, 1029 – 1035. doi: 10.5194/angeo-29-1029-2011. ADSCrossRefGoogle Scholar
  12. Filippov, B.P., Den, O.G.: 2001, A critical height of quiescent prominences before eruption. J. Geophys. Res. 106, 25177 – 25184. doi: 10.1029/2000JA004002. ADSCrossRefGoogle Scholar
  13. Fisher, G.H., Welsch, B.T.: 2008, FLCT: A fast, efficient method for performing local correlation tracking. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, ASP Conf. Ser. 383, 373 – 380. Google Scholar
  14. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray telescope (XRT) for the Hinode mission. Solar Phys. 243, 63 – 86. doi: 10.1007/s11207-007-0182-1. ADSCrossRefGoogle Scholar
  15. Graham, J.D., Norton, A., López Ariste, A., Lites, B., Socas-Navarro, H., Tomczyk, S.: 2003, The Helioseismic and Magnetic Imager (HMI) on SDO: Full vector magnetography with a filtergraph polarimeter. In: Trujillo-Bueno, J., Sanchez Almeida, J. (eds.) ASP Conf. Ser. 307, 131 – 136. Google Scholar
  16. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The Trasition Region and Coronal Explorer. Solar Phys. 187, 229 – 260. doi: 10.1023/A:1005166902804. ADSCrossRefGoogle Scholar
  17. Heyvaerts, J., Priest, E.R., Rust, D.M.: 1977, An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123 – 137. doi: 10.1086/155453. ADSCrossRefGoogle Scholar
  18. Jess, D.B., Mathioudakis, M., Christian, D.J., Keenan, F.P., Ryans, R.S.I., Crockett, P.J.: 2010, ROSA: A high-cadence, synchronized multi-camera solar imaging system. Solar Phys. 261, 363 – 373. doi: 10.1007/s11207-009-9500-0. ADSCrossRefGoogle Scholar
  19. Ji, H., Wang, H., Schmahl, E.J., Moon, Y., Jiang, Y.: 2003, Observations of the failed eruption of a filament. Astrophys. J. Lett. 595, 135 – 138. doi: 10.1086/378178. ADSCrossRefGoogle Scholar
  20. Karpen, J.T., Boris, J.P.: 1986, Response of an emerging flux tube to a current-driven instability. Astrophys. J. 307, 826 – 837. doi: 10.1086/164469. ADSCrossRefGoogle Scholar
  21. Kumar, P., Manoharan, P.K., Uddin, W.: 2010a, Evolution of solar magnetic field and associated multiwavelength phenomena: flare events on 2003 November 20. Astrophys. J. 710, 1195 – 1204. doi: 10.1088/0004-637X/710/2/1195. ADSCrossRefGoogle Scholar
  22. Kumar, P., Srivastava, A.K., Somov, B.V., Manoharan, P.K., Erdélyi, R., Uddin, W.: 2010b, Evidence of solar flare triggering due to loop-loop interaction caused by footpoint shear motion. Astrophys. J. 723, 1651 – 1664. doi: 10.1088/0004-637X/723/2/1651. ADSCrossRefGoogle Scholar
  23. Kumar, P., Srivastava, A.K., Filippov, B., Uddin, W.: 2010c, Multiwavelength study of the M8.9/3B solar flare from AR NOAA 10960. Solar Phys. 266, 39 – 58. doi: 10.1007/s11207-010-9586-4. ADSCrossRefGoogle Scholar
  24. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2011, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. doi: 10.1007/s11207-011-9776-8.
  25. Liu, Y., Su, J., Xu, Z., Lin, H., Shibata, K., Kurokawa, H.: 2009, New observation of failed filament eruptions: The influence of asymmetric coronal background fields on solar eruptions. Astrophys. J. Lett. 696, 70 – 73. doi: 10.1088/0004-637X/696/1/L70. ADSCrossRefGoogle Scholar
  26. Martin, S.F., Bentley, R.D., Schadee, A., Antalova, A., Kucera, A., Dezso, L., Gesztelyi, L., Harvey, K.L., Jones, H., Livi, S.H.B.: 1984, Relationships of a growing magnetic flux region to flares. Adv. Space Res. 4, 61 – 70. doi: 10.1016/0273-1177(84)90161-3. ADSCrossRefGoogle Scholar
  27. Okamoto, T.J., Tsuneta, S., Berger, T.E.: 2010, A rising cool column as a signature of helical flux emergence and formation of prominence and coronal cavity. Astrophys. J. 719, 583 – 590. doi: 10.1088/0004-637X/719/1/583. ADSCrossRefGoogle Scholar
  28. Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: 2008, Emergence of a helical flux rope under an active region prominence. Astrophys. J. Lett. 673, 215 – 218. doi: 10.1086/528792. ADSCrossRefGoogle Scholar
  29. Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: 2009, Prominence formation associated with an emerging helical flux rope. Astrophys. J. 697, 913 – 922. doi: 10.1088/0004-637X/697/1/913. ADSCrossRefGoogle Scholar
  30. Roussev, I., Galsgaard, K., Erdélyi, R., Doyle, J.G.: 2001a, Modelling of explosive events in the solar transition region in a 2D environment. I. General reconnection jet dynamics. Astron. Astrophys. 370, 298 – 310. doi: 10.1051/0004-6361:20010207. ADSCrossRefGoogle Scholar
  31. Roussev, I., Galsgaard, K., Erdélyi, R., Doyle, J.G.: 2001b, Modelling of explosive events in the solar transition region in a 2D environment. II. Various MHD experiments. Astron. Astrophys. 375, 228 – 242. doi: 10.1051/0004-6361:20010765. ADSCrossRefGoogle Scholar
  32. Roussev, I., Doyle, J.G., Galsgaard, K., Erdélyi, R.: 2001c, Modelling of solar explosive events in 2D environments. III. Observable consequences. Astron. Astrophys. 380, 719 – 726. doi: 10.1051/0004-6361:20011497. ADSCrossRefGoogle Scholar
  33. Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 341 – 350. doi: 10.1117/12.460377. Google Scholar
  34. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., (MDI Engineering Team): 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. ADSCrossRefGoogle Scholar
  35. Schrijver, C.J., Title, A.M.: 1999, Active regions losing their moorings by subsurface reconnection. Solar Phys. 188, 331 – 344. doi: 10.1023/A:1005281526160. ADSCrossRefGoogle Scholar
  36. Shelyag, S., Fedun, V., Keenan, F.P., Erdélyi, R., Mathioudakis, M.: 2011a, Photospheric magnetic vortex structures. Ann. Geophys. 29, 883 – 887. doi: 10.5194/angeo-29-883-2011. ADSCrossRefGoogle Scholar
  37. Shelyag, S., Keys, P., Mathioudakis, M., Keenan, F.P.: 2011b, Vorticity in the solar photosphere. Astron. Astrophys. 526, A5. doi: 10.1051/0004-6361/201015645. ADSCrossRefGoogle Scholar
  38. Shen, Y.D., Liu, Y., Liu, R.: 2011, A time series of filament eruptions observed by three eyes from space: from failed to successful eruptions. Res. Astron. Astrophys. 11, 594 – 606. doi: 10.1088/1674-4527/11/5/009. CrossRefADSGoogle Scholar
  39. Shibata, K., Nozawa, S., Matsumoto, R., Sterling, A.C., Tajima, T.: 1990, Emergence of solar magnetic flux from the convection zone into the photosphere and chromosphere. Astrophys. J. Lett. 351, 25 – 28. doi: 10.1086/185671. ADSCrossRefGoogle Scholar
  40. Simon, G.W., Weiss, N.O.: 1997, Kinematic modeling of vortices in the solar photosphere. Astrophys. J. 489, 960. doi: 10.1086/304800. ADSCrossRefGoogle Scholar
  41. Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Observation of kink instability during small B5.0 solar flare on 2007 June 4. Astrophys. J. 715, 292 – 299. doi: 10.1088/0004-637X/715/1/292. ADSCrossRefGoogle Scholar
  42. Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043 – 1059. doi: 10.1051/0004-6361:20030692. ADSCrossRefGoogle Scholar
  43. Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, 97 – 100. doi: 10.1086/462412. ADSCrossRefGoogle Scholar
  44. Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, Small-scale swirl events in the quiet Sun chromosphere. Astron. Astrophys. Lett. 507, 9 – 12. doi: 10.1051/0004-6361/200913380. ADSCrossRefGoogle Scholar
  45. Welsch, B.T., Abbett, W.P., De Rosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434 – 1452. doi: 10.1086/522422. ADSCrossRefGoogle Scholar
  46. Xu, Y., Liu, R., Jing, J., Wang, H.: 2010, Partial eruption and shrinkage of filaments during solar flares in new solar cycle. Bull. Am. Astron. Soc. 41, 901. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pankaj Kumar
    • 1
    • 2
  • Ablishek K. Srivastava
    • 1
    • 4
  • B. Filippov
    • 3
  • R. Erdélyi
    • 4
  • Wahab Uddin
    • 1
  1. 1.Aryabhatta Research Institute of Observational Sciences (ARIES)NainitalIndia
  2. 2.Korea Astronomy and Space Science Institute (KASI)DaejeonRepublic of Korea
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of SciencesTroitskRussia
  4. 4.Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and StatisticsThe University of SheffieldSheffieldUK

Personalised recommendations