Solar Physics

, 272:189 | Cite as

Online Multi-step Ahead Prediction of Time-Varying Solar and Geomagnetic Activity Indices via Adaptive Neurofuzzy Modeling and Recursive Spectral Analysis

  • Masoud Mirmomeni
  • Caro Lucas
  • Babak Nadjar Araabi
  • Behzad Moshiri
  • Mohammad Reza Bidar


The time-varying Sun as the main source of space weather affects the Earth’s magnetosphere by emitting hot magnetized plasma in the form of solar wind into interplanetary space. Solar and geomagnetic activity indices and their chaotic characteristics vary abruptly during solar and geomagnetic storms. This variation depicts the difficulties in modeling and long-term prediction of solar and geomagnetic storms. On the other hand, the combination of neurofuzzy models and spectral analysis has been a subject of interest due to their many practical applications in modeling and predicting complex phenomena. However, these approaches should be trained by algorithms that need to be carried out by an offline data set, which influences their performance in online modeling and prediction of time-varying phenomena. This paper proposes an adaptive approach for multi-step ahead prediction of space weather indices by extending the regular singular spectrum analysis and locally linear neurofuzzy models to adaptive approaches. The combination of these recursive approaches fulfills requirements of long-term prediction of solar and geomagnetic activity indices. The results demonstrate the power of the proposed method in online prediction of space weather indices.


Space weather Geomagnetic disturbance Multi-step ahead prediction Adaptive neurofuzzy models Recursive spectral analysis 


  1. Bothmer, V., Daglis, I.: 2007, Space Weather: Physics and Effects, Springer/Praxies, Berlin. Google Scholar
  2. Brown, M., Harris, C.: 1995, Neurofuzzy Adaptive Modeling and Control, Prentice Hall, London. Google Scholar
  3. Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80(31), 4204 – 4214. ADSCrossRefGoogle Scholar
  4. Canon, P.S., Angling, M.J., Lundborg, B.: 2002, Characterisation and modelling of the HF communications channel. In: Stone, W.R. (ed.) Review of Radio Science 1999–2002. IEEE-Wiley, New York, 597 – 623. Google Scholar
  5. Champagne, B.: 1994, Adaptive eigendecomposition of data covariance matrices based on first-order perturbations. IEEE Trans. Signal Process. 42(10), 2758 – 2770. ADSCrossRefGoogle Scholar
  6. Daglis, I.A.: 2004, Effects of Space Weather on Technology Infrastructure, Kluwer Academic, Dordrecht. Google Scholar
  7. Deng, D., Kasabov, N.: 2000, Evolving self-organizing maps for online learning, data analysis and modeling. In: Proc. IJCNN’2000 Neural Networks, Neural Computing, New Challenges Perspectives New Millennium, New York, 3 – 8. CrossRefGoogle Scholar
  8. Erdogmus, D., Rao, Y.N., Peddaneni, H., Hegde, A., Principe, J.C.: 2005, Recursive principal component analysis using eigenvector matrix perturbation. EURASIP J. Appl. Signal Process. 13, 2034 – 2041. Google Scholar
  9. Franke, D.: 1994, Application of extended Gershgorin theorems to certain distributed-parameter control problems. In: Proc. of 24th IEEE Conference on Decision and Control, Lauderdale, FL, USA, November 1994, 1151 – 1156. Google Scholar
  10. Gholipour, A., Araabi, B.N., Lucas, C.: 2006, Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process. Lett. 24, 217 – 239. CrossRefGoogle Scholar
  11. Gholipour, A., Lucas, C., Araabi, B.N., Shafiee, M.: 2005, Solar activity forecast: spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603. ADSCrossRefGoogle Scholar
  12. Gholipour, A., Lucas, C., Araabi, B.N., Mirmomeni, M., Shafiee, M.: 2007, Extracting the main patterns of natural time series for long-term neurofuzzy prediction. Neural Comput. Appl. 16(4 – 5), 383 – 393. Google Scholar
  13. Gleisner, H., Lundstedt, H.: 1997, Response of the auroral electrojets to the solar wind modeled with neural networks. J. Geophys. Res. 102(A7), 14269 – 14278. ADSCrossRefGoogle Scholar
  14. Harris, C., Hong, C., Gon, Q.: 2002, Adaptive Modelling, Estimation and Fusion From Data: A Neurofuzzy Approach, Springer, London. zbMATHCrossRefGoogle Scholar
  15. Haykin, S. (ed.): 1994, Unsupervised Neural networks: A Comprehensive Foundation, Macmillan, New York. Google Scholar
  16. Kivelson, M., Russell, C.T.: 1995, Introduction to Space Physics, Cambridge. Google Scholar
  17. Leung, H., Lo, T., Wang, S.: 2001, Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Netw. 12(5), 1163 – 1172. CrossRefGoogle Scholar
  18. Lillekjendlie, B., Kugimutzis, D., Christophersen, N.: 1994, Chaotic time series, part II: System identification and prediction. Identif. Control 15, 225 – 243. zbMATHCrossRefGoogle Scholar
  19. Ljung, L.: 1999, System Identification, Theory for the User, Prentice-Hall, London. Google Scholar
  20. Lughofer, E., Klement, E.P.: 2005, FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: 2005 IEEE International Conference on Fuzzy Systems, 915 – 920. CrossRefGoogle Scholar
  21. Mayaud, P.N.: 1980, Derivation, Meaning, and use of Geomagnetic Indices, American Geophysical Union, Washington. CrossRefGoogle Scholar
  22. Mirmomeni, M., Lucas, C.: 2008, Model based method for determination the minimum embedding dimension from solar activity chaotic time series. Int. J. Eng., Trans. A, Basics 21(1), 31 – 44. Google Scholar
  23. Mirmomeni, M., Lucas, C.: 2009a, Analyzing the variation of embedding dimension of solar and geomagnetic activity indices during geomagnetic storm time. Earth Planets Space 61, 237 – 247. ADSGoogle Scholar
  24. Mirmomeni, M., Lucas, C.: 2009b, Analyzing the variation of Lyapunov exponents of solar and geomagnetic activity indices during coronal mass ejections. Space Weather 7, doi: 10.1029/2008SW000454.
  25. Mirmomeni, M., Lucas, C., Moshiri, B.: 2007, Long term prediction of chaotic time series with the aid of neurofuzzy models, spectral analysis and correlation analysis. In: Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, 12 – 17 August. Google Scholar
  26. Mirmomeni, M., Shafiee, M., Lucas, C., Araabi, B.N.: 2006, Introducing a new learning method for fuzzy descriptor systems with the aid of spectral analysis to forecast solar activity. J. Atmos. Solar-Terr. Phys. 68, 2061 – 2074. ADSCrossRefGoogle Scholar
  27. Mirmomeni, M., Lucas, C., Araabi, B.N., Shafiee, M.: 2007, Forecasting sunspot numbers with the aid of fuzzy descriptor models. Space Weather. Int. J. Res. Appl., doi: 10.1029/2006SW000289. Google Scholar
  28. Mirmomeni, M., Kamaliha, E., Shafiee, M., Lucas, C.: 2009, Long-term prediction of solar and geomagnetic activity daily time series using singular spectrum analysis and fuzzy descriptor models. Earth Planets Space 61, 1089 – 1101. ADSGoogle Scholar
  29. Nelles, O.: 2001, Nonlinear System Identification, Springer, Berlin. zbMATHGoogle Scholar
  30. O’Brien, T.P., McPherron, R.L.: 2000, Forecasting the ring current index Dst in real time. J. Atmos. Solar-Terr. Phys. 62(14), 1295 – 1299. ADSCrossRefGoogle Scholar
  31. Rezaei Yousefi, M., Salehi Kasmaei, B., Vahabie, A., Lucas, C., Araabi, B.N.: 2009, Input selection based on information theory for constructing predictor models of solar and geomagnetic activity indices. Solar Phys. 258, 297 – 318. ADSCrossRefGoogle Scholar
  32. Stefanski, A.: 2000, Estimation of the largest Lyapunov exponent in systems with impacts. Chaos Solitons Fractals 11, 2443 – 2451. MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Vassiliadis, D.: 2000, System identification, modeling, and prediction for space weather environments. IEEE Trans. Plasma Sci. 28(6), 1944–1955. MathSciNetADSCrossRefGoogle Scholar
  34. Vautard, R., Ghil, M.: 1989, Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series. Physica D 35, 395 – 424. MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. Vautard, R., Yiou, P., Ghil, M.: 1992, Singular spectrum analysis: A toolkit for short noisy chaotic signals. Physica D 58, 95 – 126. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Masoud Mirmomeni
    • 1
    • 2
  • Caro Lucas
    • 1
    • 3
  • Babak Nadjar Araabi
    • 1
    • 3
  • Behzad Moshiri
    • 1
  • Mohammad Reza Bidar
    • 4
  1. 1.Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University College of EngineeringUniversity of TehranTehranIran
  2. 2.Computer Science and Engineering DepartmentMichigan State UniversityEast LansingUSA
  3. 3.School of Cognitive SciencesInstitute for Studies in Theoretical Physics and MathematicsTehranIran
  4. 4.Department of MathematicsSharif University of TechnologyTehranIran

Personalised recommendations