Solar Physics

, 272:159

Solar Spectral Irradiance Variations in 240 – 1600 nm During the Recent Solar Cycles 21 – 23

  • J. Pagaran
  • M. Weber
  • M. T. DeLand
  • L. E. Floyd
  • J. P. Burrows


Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 – 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.


Solar irradiance Solar cycle, models Solar cycle, observations Active regions Sunspots 


  1. Arnold, N.: 2002, Solar variability, coupling between atmospheric layers and climate change. Proc. Roy. Soc. London A 360, 2787 – 2804. doi:10.1098/rsta.2002.1091. ADSGoogle Scholar
  2. Balmaceda, L.A., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous sunspot areas database covering more than 130 years. J. Geophys. Res. 114, A7104. doi:10.1029/2009JA014299. CrossRefGoogle Scholar
  3. Beasley, A.J., Cram, L.E.: 1990, Stellar analogues of the solar cycle and activity. Solar Phys. 125, 191 – 207. doi:10.1007/BF00154789. ADSCrossRefGoogle Scholar
  4. Bonnet, R.M.: 1981, The role of space techniques in the understanding of solar variability. Solar Phys. 74, 485 – 501. doi:10.1007/BF00154532. ADSCrossRefGoogle Scholar
  5. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: 1999, SCIAMACHY: mission, objectives, and measurement modes. J. Atmos. Sci. 56, 127 – 150. ADSCrossRefGoogle Scholar
  6. Brueckner, G.E., Edlow, K.L., Floyd, L.E., Lean, J.L., Vanhoosier, M.E.: 1993, The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. 98(D6), 10695 – 10711. doi:10.1029/93JD00410. ADSCrossRefGoogle Scholar
  7. Brueckner, G.E., Floyd, L.E., Lund, P.A., Prinz, D.K., Vanhoosier, M.E.: 1995, Solar ultraviolet spectral-irradiance observations from the SUSIM-UARS experiment. Metrologia 32, 661 – 665. doi:10.1088/0026-1394/32/6/53. ADSCrossRefGoogle Scholar
  8. Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., Debeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.U., Eisinger, M., Perner, D.: 1999, The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 56, 151 – 175. ADSCrossRefGoogle Scholar
  9. de Toma, G., White, O.R., Chapman, G.A., Walton, S.R., Preminger, D.G., Cookson, A.M.: 2004, Solar Cycle 23: An anomalous cycle? Astrophys. J. 609, 1140 – 1152. doi:10.1086/421104. ADSCrossRefGoogle Scholar
  10. de Wit, T.D., Watermann, J.: 2010, Solar forcing of the terrestrial atmosphere. C. R. Geosci. 342(4 – 5), 259 – 272. doi:10.1016/j.crte.2009.06.001. Google Scholar
  11. DeLand, M.T., Cebula, R.P.: 1993, Composite Mg ii solar activity index for Solar Cycles 21 and 22. J. Geophys. Res. 98, 12809 – 12823. ADSCrossRefGoogle Scholar
  12. DeLand, M.T., Cebula, R.P.: 2008, Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res. 113, A11103. doi:10.1029/2008JA013401. ADSCrossRefGoogle Scholar
  13. Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S.K., Spruit, H.C., Unruh, Y., Vögler, A.: 2009, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337 – 380. doi:10.1007/s11214-009-9562-1. ADSCrossRefGoogle Scholar
  14. Dudok de Wit, T., Kretzschmar, M., Lilensten, J., Woods, T.: 2009a, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett. 36, L10107. doi:10.1029/2009GL037825. ADSCrossRefGoogle Scholar
  15. Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys. 353, 380 – 388. ADSGoogle Scholar
  16. Floyd, L.E., Cook, J.W., Herring, L.C., Crane, P.C.: 2003, SUSIM’s 11-year observational record of the solar UV irradiance. Adv. Space Res. 31, 2111 – 2120. doi:10.1016/S0273-1177(03)00148-0. ADSCrossRefGoogle Scholar
  17. Floyd, L., Newmark, J., Cook, J., Herring, L., McMullin, D.: 2005, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Solar-Terr. Phys. 67, 3 – 15. doi:10.1016/j.jastp.2004.07.013. ADSCrossRefGoogle Scholar
  18. Fröhlich, C.: 2009, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, L27 – L30. doi:10.1051/0004-6361/200912318. ADSCrossRefGoogle Scholar
  19. Fröhlich, C., Lean, J.: 1998, Total solar irradiance variations: The construction of a composite and its comparison with models. In: Deubner, F.-L., Christensen-Dalsgaard, J., Kurtz, D. (eds.) New Eyes to See Inside the Sun and Stars, IAU Symp. 185, Kluwer Academic, Dordrecht, 89 – 102. CrossRefGoogle Scholar
  20. Fröhlich, C., Lean, J.: 2004, Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev. 12, 273 – 320. doi:10.1007/s00159-004-0024-1. ADSCrossRefGoogle Scholar
  21. Garcia, R.R.: 2010, Solar surprise? Nature 467, 668 – 669. doi:10.1038/467668a. ADSCrossRefGoogle Scholar
  22. Gray, L., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D.T., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. doi:10.1029/2009RG000282. ADSCrossRefGoogle Scholar
  23. Haigh, J.D.: 2007, The Sun and the Earth’s climate. Living Rev. Solar Phys. 4(2).
  24. Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696 – 699. doi:10.1038/nature09426. ADSCrossRefGoogle Scholar
  25. Harder, J.W., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005a, The Spectral Irradiance Monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 141 – 167. doi:10.1007/s11207-005-5007-5. ADSCrossRefGoogle Scholar
  26. Harder, J.W., Fontenla, J., Lawrence, G., Woods, T., Rottman, G.: 2005b, The Spectral Irradiance Monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 169 – 204. doi:10.1007/s11207-005-1528-1. ADSCrossRefGoogle Scholar
  27. Harder, J.W., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, 7801. doi:10.1029/2008GL036797. CrossRefGoogle Scholar
  28. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3 – 24. doi:10.1007/s11207-010-9555-y. ADSCrossRefGoogle Scholar
  29. Hoaglin, D., Mosteller, F., Tukey, J.: 1983, Understanding Robust and Exploratory Data Analysis, Wiley, New York. MATHGoogle Scholar
  30. Krivova, N.A., Solanki, S.K., Floyd, L.: 2006, Reconstruction of solar UV irradiance in Cycle 23. Astron. Astrophys. 452, 631 – 639. doi:10.1051/0004-6361:20064809. ADSCrossRefGoogle Scholar
  31. Krivova, N.A., Solanki, S.K., Unruh, Y.: 2011, Towards a long-term record of solar total and spectral irradiance. J. Atmos. Solar-Terr. Phys. 73, 223 – 234. doi:10.1016/j.jastp.2009.11.013. CrossRefGoogle Scholar
  32. Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar total and spectral irradiance variations in Solar Cycle 23: Is solar surface magnetism the cause? Astron. Astrophys. 399, L1 – L4. ADSCrossRefGoogle Scholar
  33. Krivova, N.A., Solanki, S.K., Wenzler, T., Podlipnik, B.: 2009, Reconstruction of solar UV irradiance since 1974. J. Geophys. Res. 114, D00I04. doi:10.1029/2009JD012375. CrossRefGoogle Scholar
  34. Kurucz, R.: 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cambridge, Mass.: Smithsonian Astrophysical Observatory, 1993. 13. Google Scholar
  35. Lean, J.L.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett. 16, 2425 – 2428. ADSCrossRefGoogle Scholar
  36. Lean, J.L., Rottman, G.J., Kyle, H.L., Woods, T.N., Hickey, J.R., Puga, L.C.: 1997, Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200 – 400 nm). J. Geophys. Res. 102, 29939 – 29956. ADSCrossRefGoogle Scholar
  37. Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys. 230, 27 – 53. doi:10.1007/s11207-005-1527-2. ADSCrossRefGoogle Scholar
  38. Lockwood, M., Bell, C., Woollings, T., Harrison, R.G., Gray, L.J., Haigh, J.D.: 2010, Top-down solar modulation of climate: Evidence for centennial-scale change. Environ. Res. Lett. 5(3), 034008. doi:10.1088/1748-9326/5/3/034008. ADSCrossRefGoogle Scholar
  39. Pagaran, J., Weber, M., Burrows, J.: 2009, Solar variability from 240 to 1750 nm in terms of facular brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884 – 1895. doi:10.1088/0004-637X/700/2/1884. ADSCrossRefGoogle Scholar
  40. Pagaran, J.A., Harder, J.W., Weber, M., Floyd, L.E., Burrows, J.P.: 2011, Intercomparison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67. doi:10.1051/0004-6361/201015632. ADSCrossRefGoogle Scholar
  41. Rottman, G.: 2006, Measurement of total and spectral solar irradiance. Space Sci. Rev. 125, 39 – 51. doi:10.1007/s11214-006-9045-6. ADSCrossRefGoogle Scholar
  42. Rottman, G., Mount, G., Lawrence, G., Woods, T., Harder, J., Tournois, S.: 1998, Solar spectral irradiance measurements: Visible to near-infrared regions. Metrologia 35, 707 – 712. doi:10.1088/0026-1394/35/4/82. ADSCrossRefGoogle Scholar
  43. Skupin, J., Noël, S., Wuttke, M.W., Gottwald, M., Bovensmann, H., Weber, M., Burrows, J.P.: 2005a, SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Adv. Space Res. 35, 370 – 375. doi:10.1016/j.asr.2005.03.036. ADSCrossRefGoogle Scholar
  44. Skupin, J., Weber, M., Noël, S., Bovensmann, H., Burrows, J.P.: 2005b, GOME and SCIAMACHY solar measurements: Solar spectral irradiance and Mg ii solar activity proxy indicator. Mem. Soc. Astron. Ital. 76, 1038 – 1041. ADSGoogle Scholar
  45. Solanki, S.K., Krivova, N.A.: 2004, Solar irradiance variations: from current measurements to long-term estimates. Solar Phys. 224, 197 – 208. doi:10.1007/s11207-005-6499-8. ADSCrossRefGoogle Scholar
  46. Solanki, S.K., Unruh, Y.C.: 1998, A model of the wavelength dependence of solar irradiance variations. Astron. Astrophys. 329, 747 – 753. ADSGoogle Scholar
  47. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, Solar irradiance reference spectra. Geophys. Monogr. 41, 171 – 194. doi:10.10219/141GM13. CrossRefGoogle Scholar
  48. Tobiska, W.K., Bouwer, S.D.: 2006, New developments in SOLAR2000 for space research and operations. Adv. Space Res. 37, 347 – 358. doi:10.1016/j.asr.2005.08.015. ADSCrossRefGoogle Scholar
  49. Tobiska, W.K., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D., Rottman, G., White, O.R.: 2000, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Solar-Terr. Phys. 62, 1233 – 1250. doi:10.1016/S1364-6826(00)00070-5. ADSCrossRefGoogle Scholar
  50. Unruh, Y.C., Solanki, S.K., Fligge, M.: 1999, The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophys. 345, 635 – 642. ADSGoogle Scholar
  51. Unruh, Y.C., Solanki, S.K., Fligge, M.: 2000, Modelling solar irradiance variations: Comparison with observations, including line-ratio variations. Space Sci. Rev. 94, 145 – 152. ADSCrossRefGoogle Scholar
  52. Unruh, Y.C., Krivova, N.A., Solanki, S.K., Harder, J.W., Kopp, G.: 2008, Spectral irradiance variations: Comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys. 486, 311 – 323. doi:10.1051/0004-6361:20078421. ADSCrossRefGoogle Scholar
  53. Viereck, R.A., Puga, L., McMullin, D., Judge, D., Weber, M., Tobiska, W.K.: 2001, The Mg ii index: A proxy for solar EUV. Geophys. Res. Lett. 28, 1343 – 1346. ADSCrossRefGoogle Scholar
  54. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg ii index spanning from 1978 to 2003. Space Weather 2, S10005. ADSCrossRefGoogle Scholar
  55. Weber, M., Burrows, J.P., Cebula, R.P.: 1998, GOME Solar UV/vis irradiance measurements between 1995 and 1997 – first results on proxy solar activity studies. Solar Phys. 177, 63 – 77. ADSCrossRefGoogle Scholar
  56. Wenzler, T., Solanki, S.K., Krivova, N.A.: 2009, Reconstructed and measured total solar irradiance: Is there a secular trend between 1978 and 2003? Geophys. Res. Lett. 36, L11102. doi:10.1029/2009GL037519. ADSCrossRefGoogle Scholar
  57. Wenzler, T., Solanki, S.K., Krivova, N.A., Fröhlich, C.: 2006, Reconstruction of solar irradiance variations in Cycles 21 – 23 based on surface magnetic fields. Astron. Astrophys. 460, 583 – 595. doi:10.1051/0004-6361:20065752. ADSCrossRefGoogle Scholar
  58. Willson, R.C., Mordvinov, A.V.: 2003, Secular total solar irradiance trend during Solar Cycles 21 – 23. Geophys. Res. Lett. 30(5), 1199. doi:10.1029/2002GL016038. ADSCrossRefGoogle Scholar
  59. Woods, T.N., Rottman, G.J.: 2002, Solar Ultraviolet Variability over Time Periods of Aeronomic Interest, AGU Monogr. 130, AGU, Washington, 221 – 234. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Pagaran
    • 1
  • M. Weber
    • 1
  • M. T. DeLand
    • 2
  • L. E. Floyd
    • 3
  • J. P. Burrows
    • 1
  1. 1.Institute of Environmental Physics (IUP), Department of Physics and EngineeringUniversity of BremenBremenGermany
  2. 2.Science System and Applications, Inc (SSAI)LanhamUSA
  3. 3.Interferometrics Inc.HerndonUSA

Personalised recommendations