Solar Physics

, Volume 271, Issue 1–2, pp 183–195 | Cite as

Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 – 2001

Article

Abstract

We employ annually averaged solar and geomagnetic activity indices for the period 1960 – 2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number Rs, group sunspot number Rg, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.

Keywords

Cross-correlation Geoeffectiveness Geomagnetic global and regional activity indices Solar activity indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, D.N.: 2000, Effects of the Sun on the Earth’s environment. J. Atmos. Solar-Terr. Phys. 62, 1669 – 1681. ADSCrossRefGoogle Scholar
  2. Baumjohann, W.: 1986, Merits and limitations of the use of geomagnetic indices in solar wind–magnetosphere coupling studies. In: Kamide, Y., Slavin, J.A. (eds.) Solar Wind Magnetosphere Coupling, Reidel, Dordrecht, 3 – 15. CrossRefGoogle Scholar
  3. Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08. CrossRefGoogle Scholar
  4. Campbell, W.H.: 2003, Introduction to Geomagnetic Fields, Cambridge University Press, Cambridge, 103 – 173. Google Scholar
  5. Cole, D.G.: 2003, Spaceweather: Its effects and predictability. Space Sci. Rev. 107, 295 – 302. ADSCrossRefGoogle Scholar
  6. Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the hight correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933 – 1937. ADSCrossRefGoogle Scholar
  7. Echer, E., Gonzales, W.D., Gonzalez, A.L.C.A., Prestes, A., Vieira, L.E.A., dal Lago, A., Guarnieri, F.L., Schuch, N.J.: 2004, Long-term correlation between solar and geomagnetic activity. J. Atmos. Solar-Terr. Phys. 66, 1019 – 1025. ADSCrossRefGoogle Scholar
  8. Echer, E., Gonzalez, W.D., Guarnieri, F.L., Lago, A.D., Vieira, L.E.A.: 2005, Introduction to space weather. Adv. Space Res. 35, 855 – 865. ADSCrossRefGoogle Scholar
  9. Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189 – 1202. ADSCrossRefGoogle Scholar
  10. Georgieva, K., Kirov, B., Gavruseva, E.: 2006, Geoeffectiveness of different solar drivers, and long term variations of the correlation between sunspot and geomagnetic activity. Phys. Chem. Earth 31, 81 – 87. Google Scholar
  11. Georgieva, K., Kirov, B., Gavruseva, E.: 2010, Solar dynamo and geomagnetic activity. ArXiv:1003.2533.
  12. Gonzalez, W.D., Gonzalez, A.L.C., Tsurutani, B.T.: 1990, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181 – 187. ADSCrossRefGoogle Scholar
  13. Gonzalez, W.D., Tsurutani, B.T., Clúa de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529 – 562. ADSCrossRefGoogle Scholar
  14. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is geomagnetic storms. J. Geophys. Res. 99, 5771 – 5792. ADSCrossRefGoogle Scholar
  15. Guarnieri, F.L., Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Grande, M., Soraas, F., Ech, E.: 2006, ICME and CIR storms with particular emphasis on HILDCAA events. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Solar influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Indian Institute of Geomagnetism, Mumbai, 266 – 300. Google Scholar
  16. Hargreaves, J.K.: 1992, The Solar-Terrestrial Environment, Cambridge University Press, Cambridge, 390 – 402. Google Scholar
  17. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1). Google Scholar
  18. Hoyt, D.V., Schatten, K.H.: 1996, How well was the Sun observed during the Maunder minimum?. Solar Phys. 165, 181 – 192. ADSCrossRefGoogle Scholar
  19. Jacobs, J.A.: 1987, Geomagnetism, Vol. 1, Academic Press, London, 249 – 512. Google Scholar
  20. Kivelson, M.G., Russel, C.T.: 1995, Introduction to Space Physics, Cambridge University Press, Cambridge, 289 – 291. Google Scholar
  21. Legrand, J.P., Simon, P.A.: 1991, A two-component solar cycle. Solar Phys. 131, 187 – 209. ADSCrossRefGoogle Scholar
  22. Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439. ADSCrossRefGoogle Scholar
  23. Mandea, M., Thèbault, E.: 2007, The Changing Faces of the Earth’s Magnetic Field: A Glance at the Magnetic Lithospheric Field, from Local and Regional Scales to a Planetary View, Commission for the Geological Map of the World, 16 – 41. ISBN 978-2-9517181-9-7. Google Scholar
  24. Menvielle, M., Berthelier, A.: 1991, The K-derived planetary indices – Description and availability. Rev. Geophys. 29, 415 – 432. ADSCrossRefGoogle Scholar
  25. Mursula, K., Karinen, A.: 2005, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32, 14107 – 14111. ADSCrossRefGoogle Scholar
  26. Mursula, K., Holappa, L., Karinen, A.: 2008, Correct normalization of the Dst index. Astrophys. Space Sci. Trans. 4, 41 – 45. ADSCrossRefGoogle Scholar
  27. Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303 – 322. ADSCrossRefGoogle Scholar
  28. Richardson, I.G., Cliver, E.W., Cane, H.V.: 2002, Long-term trends in interplanetary magnetic field strength and solar wind structure during the twentieth century. J. Geophys. Res. 107(A10), SSH 12-1. CrossRefGoogle Scholar
  29. Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. Space Phys. 10, 935 – 950. ADSCrossRefGoogle Scholar
  30. Sabaka, T.J., Olsen, N., Purucker, M.E.: 2004, Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP data. Geophys. J. Int. 159, 521 – 547. ADSCrossRefGoogle Scholar
  31. Schwenn, R.: 2006, Space weather: The solar perspective. Living Rev. Solar Phys. 3(2). Google Scholar
  32. Siscoe, G.: 2000, The space-weather enterprise: past, present, and future. J. Atmos. Solar-Terr. Phys. 62, 1223 – 1232. ADSCrossRefGoogle Scholar
  33. Stamper, R., Lockwood, M., Wild, M.N., Clark, T.D.G.: 1999, Solar causes of the long-term increase in geomagnetic activity. J. Geophys. Res. 104, 28325 – 28342. ADSCrossRefGoogle Scholar
  34. Svalgaard, L., Cliver, E.W.: 2005, The IDV index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 110, A12103. ADSCrossRefGoogle Scholar
  35. Svalgaard, L., Cliver, E.W.: 2007, A floor in the solar wind magnetic field. Astron. J. 661, 203 – 206. Google Scholar
  36. Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: The temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829 – 838. ADSCrossRefGoogle Scholar
  37. Verbanac, G., Korte, M., Mandea, M.: 2007, On long-term trends of the European geomagnetic observatory biases. Earth Planets Space 59, 685 – 695. ADSGoogle Scholar
  38. Verbanac, G., Vršnak, B., Temmer, M., Korte, M., Mandea, M.: 2010, Four decades of geomagnetic and solar activity: 1960 – 2001. J. Atmos. Solar-Terr. Phys. 72, 607 – 616. CrossRefGoogle Scholar
  39. Verbanac, G., Vršnak, B., Veronig, M., Temmer, A.M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, 1 – 14. CrossRefGoogle Scholar
  40. Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in declining phase of solar cycle 23. Astron. Astrophys. accepted. Google Scholar
  41. Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331 – 346. ADSCrossRefGoogle Scholar
  42. Webb, D.F.: 2002, CMES and the solar cycle variation in their geoeffectiveness. In: Wilson, A. (ed.) Proceedings of the SOHO 11 Symposium on from Solar Min to Max: Half a Solar Cycle with SOHO SP-508, ESA, Noordwijk, 409 – 419. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Université Paris Diderot—Institut de Physique du Globe de ParisParisFrance
  3. 3.Faculty of GeodesyHvar ObservatoryZagrebCroatia
  4. 4.Department of Civil Engineering and Geological SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations