Advertisement

Solar Physics

, Volume 277, Issue 1, pp 119–130 | Cite as

Magnetic Connectivity Between Active Regions 10987, 10988, and 10989 by Means of Nonlinear Force-Free Field Extrapolation

  • Tilaye TadesseEmail author
  • T. Wiegelmann
  • B. Inhester
  • A. Pevtsov
Solar Flare Magnetic Fields and Plasmas

Abstract

Extrapolation codes for modelling the magnetic field in the corona in Cartesian geometry do not take the curvature of the Sun’s surface into account and can only be applied to relatively small areas, e.g., a single active region. We apply a method for nonlinear force-free coronal magnetic field modelling of photospheric vector magnetograms in spherical geometry which allows us to study the connectivity between multi-active regions. We use Vector Spectromagnetograph (VSM) data from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) survey to model the coronal magnetic field, where we study three neighbouring magnetically connected active regions (ARs 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between the active regions. We have studied the time evolution of the magnetic field over the period of three days and found no major changes in topologies, as there was no major eruption event. From this study we have concluded that active regions are much more connected magnetically than the electric current.

Keywords

Corona Magnetic fields Photosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, T., Aly, J.: 2010, Astron. Astrophys. 522, A52. ADSCrossRefGoogle Scholar
  2. Amari, T., Boulmezaoud, T.Z., Mikic, Z.: 1999, Astron. Astrophys. 350, 1051. ADSGoogle Scholar
  3. Amari, T., Boulmezaoud, T.Z., Aly, J.J.: 2006, Astron. Astrophys. 446, 691. ADSzbMATHCrossRefGoogle Scholar
  4. Amari, T., Aly, J.J., Luciani, J.F., Boulmezaoud, T.Z., Mikic, Z.: 1997, Solar Phys. 174, 129. ADSCrossRefGoogle Scholar
  5. Cuperman, S., Demoulin, P., Semel, M.: 1991, Astron. Astrophys. 245, 285. ADSGoogle Scholar
  6. Demoulin, P., Cuperman, S., Semel, M.: 1992, Astron. Astrophys. 263, 351. ADSGoogle Scholar
  7. DeRosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., et al.: 2009, Astrophys. J. 696, 1780. ADSCrossRefGoogle Scholar
  8. Gary, G.A.: 2001, Solar Phys. 203, 71. ADSCrossRefGoogle Scholar
  9. Inhester, B., Wiegelmann, T.: 2006, Solar Phys. 235, 201. ADSCrossRefGoogle Scholar
  10. Metcalf, T.R., Jiao, L., McClymont, A.N., Canfield, R.C., Uitenbroek, H.: 1995, Astrophys. J. 439, 474. ADSCrossRefGoogle Scholar
  11. Metcalf, T.R., Derosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTiernan, J.M.: 2008, Solar Phys. 247, 269. ADSCrossRefGoogle Scholar
  12. Mikic, Z., McClymont, A.N.: 1994, In: Balasubramaniam, K.S., Simon, G.W. (eds.) Solar Active Region Evolution: Comparing Models with Observations, ASP Conf. Ser. 68, 225. Google Scholar
  13. Molodensky, M.M.: 1974, Solar Phys. 39, 393. ADSCrossRefGoogle Scholar
  14. Régnier, S., Priest, E.R.: 2007, Astrophys. J. Lett. 669, 53. ADSCrossRefGoogle Scholar
  15. Roumeliotis, G.: 1996, Astrophys. J. 473, 1095. ADSCrossRefGoogle Scholar
  16. Sakurai, T.: 1981, Solar Phys. 69, 343. ADSCrossRefGoogle Scholar
  17. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Solar Phys. 235, 161. ADSCrossRefGoogle Scholar
  18. Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Astron. Astrophys. 508, 421. ADSzbMATHCrossRefGoogle Scholar
  19. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2011, Astron. Astrophys. 527, A30. ADSCrossRefGoogle Scholar
  20. Thalmann, J.K., Wiegelmann, T., Raouafi, N.E.: 2008, Astron. Astrophys. 488, L71. ADSCrossRefGoogle Scholar
  21. Unno, W.: 1956, Publ. Astron. Soc. Japan 8, 108. ADSGoogle Scholar
  22. Valori, G., Kliem, B., Keppens, R.: 2005, Astron. Astrophys. 433, 335. ADSzbMATHCrossRefGoogle Scholar
  23. Wheatland, M.S.: 2004, Solar Phys. 222, 247. ADSCrossRefGoogle Scholar
  24. Wheatland, M.S., Leka, K.D.: 2010, ArXiv e-prints. Google Scholar
  25. Wheatland, M.S., Régnier, S.: 2009, Astrophys. J. Lett. 700, 88. ADSCrossRefGoogle Scholar
  26. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. ADSCrossRefGoogle Scholar
  27. Wiegelmann, T.: 2004, Solar Phys. 219, 87. ADSCrossRefGoogle Scholar
  28. Wiegelmann, T.: 2007, Solar Phys. 240, 227. ADSCrossRefGoogle Scholar
  29. Wiegelmann, T.: 2008, J. Geophys. Res. 113, 3. CrossRefGoogle Scholar
  30. Wiegelmann, T., Inhester, B.: 2010, Astron. Astrophys. 516, A107. ADSCrossRefGoogle Scholar
  31. Wiegelmann, T., Neukirch, T.: 2006, Astron. Astrophys. 457, 1053. ADSCrossRefGoogle Scholar
  32. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Solar Phys. 233, 215. ADSCrossRefGoogle Scholar
  33. Wu, S.T., Sun, M.T., Chang, H.M., Hagyard, M.J., Gary, G.A.: 1990, Astrophys. J. 362, 698. ADSCrossRefGoogle Scholar
  34. Yan, Y., Sakurai, T.: 2000, Solar Phys. 195, 89. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tilaye Tadesse
    • 1
    • 2
    Email author
  • T. Wiegelmann
    • 1
  • B. Inhester
    • 1
  • A. Pevtsov
    • 3
  1. 1.Max Planck Institut für SonnensystemforschungKatlenburg-LindauGermany
  2. 2.College of Education, Department of Physics EducationAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.National Solar ObservatorySunspotUSA

Personalised recommendations