Solar Physics

, Volume 274, Issue 1–2, pp 481–502

Solar Cycle Effects on the Dynamics of Jupiter’s and Saturn’s Magnetospheres

The Sun–Earth Connection near Solar Minimum

Abstract

The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badman, S.V., Bunce, E.J., Clarke, J.T., Cowley, S.W.H., Gérard, J.-C., Grodent, D., Milan, S.E.: 2005, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110, A11216. doi:10.1029/2005JA011240. CrossRefADSGoogle Scholar
  2. Barbosa, D.D.: 1994, Neutral cloud theory of the jovian nebula: anomalous ionization effect of superthermal electrons. Astrophys. J. 430, 376 – 386. CrossRefADSGoogle Scholar
  3. Bunce, E.J., Arridge, C.S., Clarke, J.T., Coates, A.J., Cowley, S.W.H., Dougherty, M.K., Gérard, J.-C., Grodent, D., Hansen, K.C., Nichols, J.D., Southwood, D.J., Talboys, D.L.: 2008, Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, A09209. doi:10.1029/2008JA013257. CrossRefGoogle Scholar
  4. Cowley, S.W.H., Badman, S.V., Imber, S.M., Milan, S.E.: 2008a, Comment on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101. doi:10.1029/2007GL032645. CrossRefADSGoogle Scholar
  5. Cowley, S.W.H., Arridge, C.S., Bunce, E.J., Clarke, J.T., Coates, A.J., Dougherty, M.K., Gérard, J.-C., Grodent, D., Nichols, J.D., Talboys, D.L.: 2008b, Auroral current systems in Saturn’s magnetosphere: comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 26, 2613 – 2630. CrossRefADSGoogle Scholar
  6. Delamere, P.A., Bagenal, F.: 2003, Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. 108(A7), 1276. doi:10.1029/2002JA009706. CrossRefGoogle Scholar
  7. Delamere, P.A., Bagenal, F.: 2007, Longitudinal plasma density variations at Saturn caused by hot electrons. Geophys. Res. Lett. 36, L03107. doi:10.1029/2007GL031095. Google Scholar
  8. Delamere, P., Bagenal, F., Dols, V., Ray, L.C.: 2007, Saturn’s neutral torus versus Jupiter’s plasma torus. Geophys. Res. Lett. 34, L09105. doi:10.1029/2007GL029437. CrossRefGoogle Scholar
  9. Dols, V., Delamere, P.A., Bagenal, F.: 2008, A multispecies chemistry model of Io’s local interaction with the Plasma Torus. J. Geophys. Res. 113, A09208. doi:10.1029/2007JA012805. CrossRefGoogle Scholar
  10. Fleshman, B.L., Delamere, P.A., Bagenal, F.: 2010, A sensitivity study of the Enceladus torus. J. Geophys. Res. 115, E04007. doi:10.1029/2009JE003372. CrossRefGoogle Scholar
  11. Floyd, L., Newmark, J., Cook, J., Herring, L., McMullin, D.: 2005, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Solar-Terr. Phys. 67, 3 – 15. CrossRefADSGoogle Scholar
  12. Forsyth, R.J., Balogh, A., Smith, E.J., McComas, D.J.: 1996, The underlying Parker spiral structure in the Ulysses magnetic field observations, 1990 – 1994. J. Geophys. Res. 101, 395 – 403. CrossRefADSGoogle Scholar
  13. Fröhlich, C., Lean, J.: 1998, The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25(23), 4377 – 4380. CrossRefADSGoogle Scholar
  14. Galand, M., Moore, L., Charnay, B., Müller-Wodarg, I., Mendillo, M.: 2009, Solar primary and secondary ionization at Saturn. J. Geophys. Res. 114, A06313. doi:10.1029/2008JA013981. CrossRefGoogle Scholar
  15. Grocott, A., Badman, S.V., Cowley, S.W.H., Milan, S.E., Nichols, J.D., Yeoman, T.K.: 2009, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219. doi:10.1029/2009JA014330. CrossRefGoogle Scholar
  16. Hapgood, M.A., Lockwood, M., Bowe, G.A., Willis, D.M.: 1991, Variability of the interplanetary medium at 1 AU over 24 years: 1963 – 1986. Planet. Space Sci. 39(3), 411 – 423. CrossRefADSGoogle Scholar
  17. Hill, T.W.: 1979, Inertial limit on corotation. J. Geophys. Res. 84(A11), 6554 – 6558. CrossRefADSGoogle Scholar
  18. Huddleston, D.E., Russell, C.T., Le, G., Szabo, A.: 1997, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102(A11), 24289 – 24302. CrossRefADSGoogle Scholar
  19. Huebner, W.F., Keady, J.J., Lyon, S.P.: 1992, Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 1995, 1 – 294. CrossRefADSGoogle Scholar
  20. Jackman, C.M., Achilleos, N., Bunce, E.J., Cowley, S.W.H., Dougherty, M.K., Jones, G.H., Milan, S.E., Smith, E.J.: 2004, Interplanetary magnetic field at ∼ 9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109, A11203. doi:10.1029/2004JA010614. CrossRefADSGoogle Scholar
  21. Jackman, C.M., Forsyth, R.J., Dougherty, M.K.: 2008, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. 113, A08114. doi:10.1029/2008JA013083. CrossRefGoogle Scholar
  22. Lean, J.: 1987, Solar ultraviolet irradiance variations: a review. J. Geophys. Res. 92(D1), 839 – 868. CrossRefADSGoogle Scholar
  23. Lean, J.L., Warren, H.P., Mariska, J.T., Bishop, J.: 2003, A new model of solar EUV irradiance variability. 2. Comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. 108(A2), 1059. doi:10.1029/2001JA009238. CrossRefGoogle Scholar
  24. Lockwood, M., Rouillard, A.P., Finch, I.D.: 2009, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937. doi:10.1088/0004-637X/700/2/937. CrossRefADSGoogle Scholar
  25. Luhmann, J.G., Zhang, T.-L., Petrinec, S.M., Russell, C.T.: 1993, Solar cycle 21 effects on the interplanetary magnetic field and related parameters at 0.7 and 1.0 AU. J. Geophys. Res. 98(A4), 5559 – 5572. CrossRefADSGoogle Scholar
  26. McAndrews, H.J., Owen, C.J., Thomsen, M., Lavraud, B., Coates, A., Dougherty, M., Young, D.T.: 2008, Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113, A04210. doi:10.1029/2007JA012581. CrossRefGoogle Scholar
  27. McComas, D.J., Bagenal, F.: 2007, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106. doi:10.1029/2007GL031078. CrossRefADSGoogle Scholar
  28. McComas, D.J., Goldstein, R., Gosling, J.T., Skoug, R.M.: 2001, Ulysses’ second orbit: remarkably different solar wind. Space Sci. Rev. 97, 99 – 103. CrossRefADSGoogle Scholar
  29. Nagatsuma, T.: 2006, Diurnal, semiannual, and solar cycle variations of solar wind–magnetosphere–ionosphere coupling. J. Geophys. Res. 111, A09202. doi:10.1029/2005JA011122. CrossRefGoogle Scholar
  30. Nichols, J.D., Cowley, S.W.H.: 2003, Magnetosphere–ionosphere coupling currents in Jupiter’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Ann. Geophys. 21, 1419. CrossRefADSGoogle Scholar
  31. Nichols, J.D., Cowley, S.W.H.: 2004, Magnetosphere–ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of precipitations-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1499 – 1827. CrossRefGoogle Scholar
  32. Nichols, J.D., Cowley, S.W.H., McComas, D.J.: 2006, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼ 5 AU. Ann. Geophys. 24, 393 – 406. CrossRefADSGoogle Scholar
  33. Phan, T.D., Gosling, J.T., Paschmann, G., Pasma, C., Drake, J.F., Øieroset, M., Larson, D., Lin, R.P., Davis, M.S.: 2010, The dependence of magnetic reconnection on plasma ß and magnetic shear: evidence from solar wind observations. Astrophys. J. 719(2), L199. doi:10.1088/2041-8205/719/2/L199. CrossRefADSGoogle Scholar
  34. Ray, L.C., Ergun, R.E., Delamere, P.A., Bagenal, F.: 2010, Magnetosphere–ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. 115, A09211. doi:10.1029/2010JA015423. CrossRefGoogle Scholar
  35. Richards, P.G., Fennelly, J.A., Torr, D.G.: 1994a, EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99(A5), 8981 – 8992. doi:10.1029/94JA00518. CrossRefADSGoogle Scholar
  36. Richards, P.G., Fennelly, J.A., Torr, D.G.: 1994b, Correction to “EUVAC: a solar EUV flux model for aeronomic calculations”. J. Geophys. Res. 99(A7), 13283 – 13283. CrossRefADSGoogle Scholar
  37. Russell, C.T., Luhmann, J.G., Jian, L.K.: 2010, How unprecedented a solar minimum? Rev. Geophys. 48, RG2004. doi:10.1029/2009RG000316. CrossRefADSGoogle Scholar
  38. Scurry, L., Russell, C.T.: 1991, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541 – 9548. CrossRefADSGoogle Scholar
  39. Scurry, L., Russell, C.T., Gosling, J.T.: 1994, Geomagnetic activity and the beta dependence of the dayside reconnection rate. J. Geophys. Res. 99(A8), 14811 – 14814. doi:10.1029/94JA00794. CrossRefADSGoogle Scholar
  40. Slavin, J.A., Smith, E.J., Spreiter, J.R., Stahara, S.S.: 1985, Solar wind flow about the outer planets: gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90(A7), 6275 – 6286. CrossRefADSGoogle Scholar
  41. Smith, C.G.A., Aylward, A.D.: 2008, Coupled rotational dynamics of Saturn’s thermosphere and magnetosphere: a thermospheric modelling study. Ann. Geophys. 26, 1007 – 1027. CrossRefADSGoogle Scholar
  42. Smith, C.G.A., Aylward, A.D.: 2009, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199 – 230. CrossRefADSGoogle Scholar
  43. Smith, H.T., Johnson, R.E., Perry, M.E., Mitchell, D.G., McNutt, R.L., Young, D.T.: 2010, Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. 115, A10252. doi:10.1029/2009JA015184. CrossRefADSGoogle Scholar
  44. Steffl, A.J., Delamere, P.A., Bagenal, F.: 2008, Cassini UVIS observations of the Io plasma torus: IV. Modeling temporal and azimuthal variability. Icarus 194, 153 – 165. doi:10.1016/j.icarus.2007.09.019. CrossRefADSGoogle Scholar
  45. Swisdak, M., Rogers, B.N., Drake, J.F., Shay, M.A.: 2003, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108(A5), 1218. doi:10.1029/2002JA009726. CrossRefGoogle Scholar
  46. Swisdak, M., Opher, M., Drake, J.F., Alouani Bibi, F.: 2010, The vector direction of the interstellar magnetic field outside the Heliosphere. Astrophys. J. 710(2), 1769 – 1775. doi:10.1088/0004-637X/710/2/1769. CrossRefADSGoogle Scholar
  47. Tao, C., Fujiwara, H., Kasaba, Y.: 2010, Jovian magnetosphere–ionosphere current system characterized by diurnal variation of ionospheric conductance. Planet. Space Sci. 58, 351. CrossRefADSGoogle Scholar
  48. Thomas, J.H., Weiss, N.O.: 2008, Sunspots and Starspots, Cambridge University Press, Cambridge, ISBN: 978-0-521-86003-1. CrossRefGoogle Scholar
  49. Thomas, N., Bagenal, F., Hill, T.W., Wilson, J.K.: 2004, The Io neutral clouds and plasma torus. In: Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, Cambridge, 561 – 591. Google Scholar
  50. Warren, H.P.: 2006, NRLEUV 2: a new model of solar EUV irradiance variability. Adv. Space Res. 37, 359 – 365. CrossRefADSGoogle Scholar
  51. Woods, T.N.: 2008, Recent advances in observations and modelling of the solar ultraviolet and X-ray spectral irradiance. Adv. Space Res. 42(5), 895 – 902. CrossRefADSMathSciNetGoogle Scholar
  52. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg ii index spanning from 1978 to 2003. Space Weather 2(10), S10005. doi:10.1029/2004SW000084. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Mullard Space Science Laboratory, Department of Space and Climate PhysicsUniversity College LondonDorkingUK
  3. 3.The Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  4. 4.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations