Advertisement

Solar Physics

, Volume 270, Issue 1, pp 393–406 | Cite as

A New Method for Prediction of Peak Sunspot Number and Ascent Time of the Solar Cycle

  • B. Kakad
Article

Abstract

The purpose of the present study is to develop an empirical model based on precursors in the preceding solar cycle that can be used to forecast the peak sunspot number and ascent time of the next solar cycle. Statistical parameters are derived for each solar cycle using “Monthly” and “Monthly smoothed” (SSN) data of international sunspot number (R i). Primarily the variability in monthly sunspot number during different phases of the solar cycle is considered along with other statistical parameters that are computed using solar cycle characteristics, like ascent time, peak sunspot number and the length of the solar cycle. Using these statistical parameters, two mathematical formulae are developed to compute the quantities [Q C] n and [L] n for each nth solar cycle. It is found that the peak sunspot number and ascent time of the n+1th solar cycle correlates well with the parameters [Q C] n and [L] n /[S Max] n+1 and gives a correlation coefficient of 0.97 and 0.92, respectively. Empirical relations are obtained using least square fitting, which relates [S Max] n+1 with [Q C] n and [T a] n+1 with [L] n /[S Max] n+1. These relations predict a peak of 74±10 in monthly smoothed sunspot number and an ascent time of 4.9±0.4 years for Solar Cycle 24, when November 2008 is considered as the start time for this cycle. Three different methods, which are commonly used to define solar cycle characteristics are used and mathematical relations developed for forecasting peak sunspot number and ascent time of the upcoming solar cycle, are examined separately.

Keywords

Solar cycle prediction Models Sunspots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, L.A., Letellier, C., Maquet, J.: 2008, Solar Phys. 249, 103. doi: 10.1007/s11207-008-9160-5. ADSCrossRefGoogle Scholar
  2. Bhatt, N.J., Jain, R., Aggarwal, M.: 2009, Solar Phys. 260, 225. ADSCrossRefGoogle Scholar
  3. Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, Astron. Astrophys. 496, 855. ADSCrossRefGoogle Scholar
  4. Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, J. Geophys. Res. 80, 4204. ADSCrossRefGoogle Scholar
  5. Cameron, R., Schüssler, M.: 2007, Astrophys. J. 659, 801. ADSCrossRefGoogle Scholar
  6. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Phys. Rev. Lett. 98, 131103. ADSCrossRefGoogle Scholar
  7. Dikpati, M., Charbonneau, P.: 1999, Astrophys. J. 518, 508. ADSCrossRefGoogle Scholar
  8. Dikpati, M., Gilman, P.: 2008, J. Astrophys. Astron. 29, 29. ADSCrossRefGoogle Scholar
  9. Dikpati, M., de Toma, G., Gilman, P.: 2006, Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221. CrossRefGoogle Scholar
  10. Dungey, J.W.: 1961, Phys. Rev. Lett. 6, 47. ADSCrossRefGoogle Scholar
  11. Feynman, J.: 1982, J. Geophys. Res. 87, 6153. ADSCrossRefGoogle Scholar
  12. Hathaway, D.: 2010, Living Rev. Solar Phys. 7, 1. ADSGoogle Scholar
  13. Hathaway, D.H., Wilson, R.M.: 2006, Geophys. Res. Lett. 33, L18101. doi: 10.1029/2006GL027053. ADSCrossRefGoogle Scholar
  14. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, Solar Phys. 151, 177. ADSCrossRefGoogle Scholar
  15. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, J. Geophys. Res. 104(A10), 22375. ADSCrossRefGoogle Scholar
  16. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357. ADSCrossRefGoogle Scholar
  17. Hiremath, K.M.: 2008, Astrophys. Space Sci. 314, 45. ADSCrossRefGoogle Scholar
  18. Hoyng, P.: 1993, Astron. Astrophys. 272, 321. MathSciNetADSGoogle Scholar
  19. Hoyt, D.V., Schatten, K.H.: 1998, Solar Phys. 179, 189. ADSCrossRefGoogle Scholar
  20. Javaraiah, J.: 2007, Mon. Not. Roy. Astron. Soc. 377, L34. ADSCrossRefGoogle Scholar
  21. Kane, R.P.: 1999, Solar Phys. 189, 217. ADSCrossRefGoogle Scholar
  22. Kane, R.P.: 2007, Solar Phys. 243, 205. ADSCrossRefGoogle Scholar
  23. Kane, R.P.: 2008, Solar Phys. 248, 203. ADSCrossRefGoogle Scholar
  24. Kane, R.P.: 2010, Ann. Geophys. 28, 1463. ADSCrossRefGoogle Scholar
  25. Lantos, P.: 2006, Solar Phys. 236, 199. ADSCrossRefGoogle Scholar
  26. Mayaud, P.N.: 1980, Geophys. Monogr. Ser. 22, AGU, Washington, 154. Google Scholar
  27. McNish, A.G., Lincoln, J.V.: 1949, Eos Trans. AGU 30, 673. Google Scholar
  28. Obridko, V.N.: 1995, Solar Phys. 156, 179. ADSCrossRefGoogle Scholar
  29. Ohl, A.I.: 1966, Soln. Dann. 12, 84. Google Scholar
  30. Ossendrijver, A.J.H., Hoyng, P.: 1996, Astron. Astrophys. 313, 959. ADSGoogle Scholar
  31. Pesnell, W.D.: 2008, Solar Phys. 252, 209. doi: 10.1007/s11207-008-9252-2. ADSCrossRefGoogle Scholar
  32. Schatten, K.: 2005, Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL024363. ADSCrossRefGoogle Scholar
  33. Stix, M.: 1972, Astron. Astrophys. 20, 9. ADSzbMATHGoogle Scholar
  34. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32, L01104. doi: 10.1029/2004GL021664. CrossRefGoogle Scholar
  35. Thompson, R.J.: 1993, Solar Phys. 148, 383. ADSCrossRefGoogle Scholar
  36. Volobuev, D.M.: 2009, Solar Phys. 258, 319. doi: 10.1007/s11207-009-9429-3. ADSCrossRefGoogle Scholar
  37. Waldmeier, M.: 1935, Astron. Mitt. Zürich 14(133), 105. ADSGoogle Scholar
  38. Wilson, R.M.: 1990, Solar Phys. 125, 143. ADSCrossRefGoogle Scholar
  39. Wilson, R.M.: 1992, Solar Phys. 140, 181. ADSCrossRefGoogle Scholar
  40. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: 1998, J. Geophys. Res. 103(A4), 6595. ADSCrossRefGoogle Scholar
  41. Yoshida, A., Yamagishi, H.: 2010, Ann. Geophys. 28, 417. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Indian Institute of GeomagnetismNavi MumbaiIndia

Personalised recommendations