Advertisement

Solar Physics

, Volume 269, Issue 2, pp 439–449 | Cite as

Analysis of Sunspot Variability Using the Hilbert – Huang Transform

  • Bradley L. BarnhartEmail author
  • William E. Eichinger
Article

Abstract

The Hilbert – Huang transform is a relatively new data analysis technique, which is able to analyze the cyclic components of a potentially nonlinear and nonstationary data series. Monthly sunspot number data from 1749 to 2010 were analyzed using this technique, which revealed the different variability inherent in the data including the 11-year (Schwabe), 20 – 50-year (quasi-Hale) and 60 – 120-year (Gleissberg) cycles. The results were compared with traditional Fourier analysis. The Hilbert – Huang transform is able to provide a local and adaptive description of the intrinsic cyclic components of sunspot number data, which are nonstationary and which are the result of nonlinear processes.

Keywords

Hilbert – Huang transform Empirical mode decomposition EMD Sunspots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byron, F.W., Fuller, R.W.: 1992, Mathematics of Classical and Quantum Physics, Dover Publications, New York. Google Scholar
  2. Cohen, L.: 1995, Time-Frequency Analysis, Prentice-Hall, Englewood Cliffs. Google Scholar
  3. Flandrin, P., Rilling, G., Gonçalvès, P.: 2004, Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112. ADSCrossRefGoogle Scholar
  4. Huang, N.E., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., Liu, H.: 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London A 454(1971), 903. MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Kolláth, Z., Oláh, K.: 2009, Multiple and changing cycles of active stars – I. Methods of analysis and application to the solar cycles. Astron. Astrophys. 501, 695. ADSCrossRefGoogle Scholar
  6. Pegram, G.G.S., Peel, M.C., McMahon, T.A.: 2008, Empirical mode decomposition using rational splines: An application to rainfall time series. Proc. Roy. Soc. London A 464, 1483. MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Qian, S.: 2002, Introduction to Time – Frequency and Wavelet Transforms, Prentice-Hall, Upper Saddle River. Google Scholar
  8. Sonett, C.P.: 1983, J. Geophys. Res. 88(A4), 3225. ADSCrossRefGoogle Scholar
  9. Usoskin, I.G., Mursula, K.: 2003, Long-term solar cycle evolution: Review of recent developments. Solar Phys. 218, 319. ADSCrossRefGoogle Scholar
  10. Wu, Z., Huang, N.E.: 2004, A study of the characteristics of white noise using the empirical mode decomposition. Proc. Roy. Soc. London A 460(2046), 1597. ADSzbMATHCrossRefGoogle Scholar
  11. Wu, Z., Huang, N.E.: 2009, Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1. ftp://grads.iges.org/pub/ctr/ctr_193.pdf. CrossRefGoogle Scholar
  12. Wu, S., Liu, Z., Liu, B.: 2006, Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition. Opt. Commun. 267(1), 137. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of IowaIowa CityUSA

Personalised recommendations