Solar Physics

, Volume 274, Issue 1–2, pp 163–194 | Cite as

Nonlinear Force-Free and Potential-Field Models of Active-Region and Global Coronal Fields during the Whole Heliosphere Interval

  • G. J. D. PetrieEmail author
  • A. Canou
  • T. Amari
The Sun–Earth Connection near Solar Minimum


Between 24 March 2008 and 2 April 2008, the three active regions (ARs) NOAA 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliosphere Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer-belt locations, are discussed in comparison with extreme ultra-violet and coronagraph observations from STEREO. The global field is found to be far from a minimum, dipolar state. From the nonlinear models we compute physical quantities for the active regions such as the photospheric magnetic and electric current fluxes, the free magnetic energy and the relative helicity for each region each day where observations permit. The interconnectivity of the three regions is addressed in the context of the potential-field source-surface model. Using local and global quantities derived from the models, we briefly discuss the different observed activity levels of the regions.


Solar Phys Coronal Hole Magnetic Helicity Carrington Rotation Streamer Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, M., Newkirk, G.: 1969, Astrophys. J. 9, 131. Google Scholar
  2. Amari, T., Aly, J.: 2010, Astron. Astrophys. 522, A52. doi: 10.1051/0004-6361/200913058. CrossRefADSGoogle Scholar
  3. Amari, T., Boulmezaoud, T., Aly, J.: 2006, Astron. Astrophys. 446, 691. CrossRefzbMATHADSGoogle Scholar
  4. Amari, T., Boulmezaoud, T., Mikic, Z.: 1999, Astron. Astrophys. 350, 1051. ADSGoogle Scholar
  5. Amari, T., Aly, J., Luciani, J., Boulmezaoud, T., Mikić, Z.: 1997, Solar Phys. 174, 129. CrossRefADSGoogle Scholar
  6. Berger, M.: 1984, Geophys. Astrophys. Fluid Dyn. 30, 79. CrossRefADSGoogle Scholar
  7. Bineau, M.: 1972, Commun. Pure Appl. Math. 25, 77. CrossRefzbMATHMathSciNetGoogle Scholar
  8. Boulmezaoud, T., Amari, T.: 2000, Z. Angew. Math. Phys. 51(6), 942. CrossRefzbMATHMathSciNetGoogle Scholar
  9. Canou, A., Amari, T.: 2010, Astrophys. J. 715, 1566. CrossRefADSGoogle Scholar
  10. Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., Li, H.: 2009, Astrophys. J. Lett. 693, 27. CrossRefADSGoogle Scholar
  11. Cremades, H., Mandrini, C., Dasso, S.: 2011, Solar Phys. this issue. Google Scholar
  12. DeRosa, M., Schrijver, C., Barnes, G., Leka, K., Lites, B., Aschwanden, M., Amari, T., Canou, A., McTiernan, J., Régnier, S., Thalmann, J., Valori, G., Wheatland, M., Wiegelmann, T., Cheung, M., Conlon, P., Fuhrmann, M., Inhester, B., Tadesse, T.: 2009, Astrophys. J. 696, 1780. CrossRefADSGoogle Scholar
  13. Finn, J., Antonsen, T.: 1985, Comments Plasma Phys. Control. Fusion 9, 11. Google Scholar
  14. Grad, H., Rubin, H.: 1958, In: Proc. 2nd Intern. Conf. on Peaceful Uses of Atomic Energy 31, United Nations, Geneva, 190. Google Scholar
  15. Hoeksema, J.: 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields. PhD thesis, Stanford Univ., CA. Google Scholar
  16. Liu, Y., Lin, H.: 2008, Astrophys. J. 680, 1496. CrossRefADSGoogle Scholar
  17. Low, B.: 2001, J. Geophys. Res. 106, 25141. CrossRefADSGoogle Scholar
  18. Neugebauer, M., Forsyth, R., Galvin, A., Harvey, K., Hoeksema, J., Lazarus, A., Lepping, R., Linker, J., Mikić, Z., Steinberg, J., von Steiger, R., Wang, Y.M., Wimmer-Schweingruber, R.: 1998, J. Geophys. Res. 103, 14587. CrossRefADSGoogle Scholar
  19. Petrie, G., Patrikeeva, I.: 2009, Astrophys. J. 699, 871. CrossRefADSGoogle Scholar
  20. Pevtsov, A., Canfield, R., Latushko, S.: 2001, Astrophys. J. Lett. 549, 261. CrossRefADSGoogle Scholar
  21. Pevtsov, A., Canfield, R., Metcalf, T.: 1995, Astrophys. J. Lett. 440, 109. CrossRefADSGoogle Scholar
  22. Régnier, S., Amari, T.: 2004, Astron. Astrophys. 425, 345. CrossRefADSGoogle Scholar
  23. Riley, P., Linker, J., Mikić, Z., Lionello, R., Ledvina, S., Luhmann, J.: 2006, Astrophys. J. 653, 1510. CrossRefADSGoogle Scholar
  24. Sandman, A., Aschwanden, M., Derosa, M., Wülser, J., Alexander, D.: 2009, Solar Phys. 259, 1. CrossRefADSGoogle Scholar
  25. Schatten, K., Wilcox, J., Ness, N.: 1969, Solar Phys. 6, 442. CrossRefADSGoogle Scholar
  26. Schrijver, C., Liu, Y.: 2008, Solar Phys. 252, 19. CrossRefADSGoogle Scholar
  27. Schrijver, C., De Rosa, M., Title, A., Metcalf, T.: 2005, Astrophys. J. 628, 501. CrossRefADSGoogle Scholar
  28. Schrijver, C., De Rosa, M., Régnier, S., Valori, G., Wheatland, M., Wiegelmann, T.: 2006, Solar Phys. 235, 161. CrossRefADSGoogle Scholar
  29. Schrijver, C., De Rosa, M., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.: 2008, Solar Phys. 675, 1637. Google Scholar
  30. Sterling, A.: 2010, In: Corbett, I. (ed.) Whole Heliospheric Interval: Overview of JD16, Highlights of Astronomy 15, Cambridge Univ. Press, Cambridge, 498. Google Scholar
  31. Tomczyk, S., McIntosh, S., Keil, S., Judge, P., Schad, T., Seeley, D., Edmondson, J.: 2007, Science 317(5842), 1192. CrossRefADSGoogle Scholar
  32. Wang, Y.M., Sheeley, N.R.: 1992, Astrophys. J. 392, 310. CrossRefADSGoogle Scholar
  33. Wang, Y.M., Sheeley, N.R., Rich, N.: 2007, Astrophys. J. 658, 1340. CrossRefADSGoogle Scholar
  34. Webb, D., Gibson, S., Thompson, B.: 2010, In: Corbett, I. (ed.) Whole Heliospheric Interval: Overview of JD16, Highlights of Astronomy 15, Cambridge Univ. Press, Cambridge, 471. Google Scholar
  35. Webb, D., Cremades, H., Sterling, A., Mandrini, C., Dasso, S., Gibson, S., Haber, D., Komm, R., Petrie, G., McIntosh, P., Welsch, B., Plunkett, S.: 2011, Solar Phys. this issue. Google Scholar
  36. Welsch, B., McTiernan, J.: 2011, Solar Phys. this issue. Google Scholar
  37. Wheatland, M., Régnier, S.: 2009, Astrophys. J. 700, L88. CrossRefADSGoogle Scholar
  38. Wheatland, M., Sturrock, P., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. CrossRefADSGoogle Scholar
  39. Wiegelmann, T.: 2008, J. Geophys. Res. 113, A03S02. CrossRefGoogle Scholar
  40. Wiegelmann, T., Yelles Chaouche, L., Solanki, S., Lagg, A.: 2010, Astron. Astrophys. 511, A4. CrossRefADSGoogle Scholar
  41. Zhao, X., Hoeksema, J., Scherrer, P.: 2005, J. Geophys. Res. 110, A10101. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.National Solar ObservatoryTucsonUSA
  2. 2.CNRSCentre de Physique Théorique de l’Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations