Advertisement

Solar Physics

, Volume 267, Issue 2, pp 393–410 | Cite as

Vlasov – Maxwell, Self-consistent Electromagnetic Wave Emission Simulations in the Solar Corona

  • David TsiklauriEmail author
Article

Abstract

1.5D Vlasov – Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the context of solar physics. The simulations mimic the plasma emission mechanism and Larmor-drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that a 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to the Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. The generated perturbations consist of two parts: i) non-escaping (trapped) Langmuir type oscillations, which are localised in the regions of density inhomogeneity, and are highly filamentary, with the period of appearance of the filaments close to electron plasma frequency in the dense regions; and ii) escaping electromagnetic radiation with phase speeds close to the speed of light. When the density gradient is removed (i.e. when plasma becomes stable to the Larmor-drift instability) and a low density super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, the plasma emission mechanism generates non-escaping Langmuir type oscillations, which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips (the narrow-band line emission) observed in some dynamical spectra. Predictions of quasilinear theory are: i) the electron free streaming and ii) the long relaxation time of the beam, in accord with the analytic expressions. These are corroborated via direct, fully-kinetic simulation. Finally, the interplay of the Larmor-drift instability and plasma emission mechanism is studied by considering a dense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. The latter case enables one to study the deviations from the quasilinear theory.

Keywords

Corona, radio emission Radio emission, theory Energetic particles, electrons, acceleration Flares, energetic particles Instabilities Magnetic fields, corona 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 28.8 MB)

(MPG 27.1 MB)

(MPG 27.5 MB)

References

  1. Alexandrov, A., Bogdankevich, L., Rukhadze, A.: 1988, Foundations of Plasma Electrodynamics, Visshaia Shkola, Moscow (in Russian). Google Scholar
  2. Arons, J., Barnard, J.J.: 1986, Wave propagation in pulsar magnetospheres – Dispersion relations and normal modes of plasmas in superstrong magnetic fields. Astrophys. J. 302, 120 – 137. doi: 10.1086/163978. CrossRefADSGoogle Scholar
  3. Aurass, H., Rausche, G., Berkebile-Stoiser, S., Veronig, A.: 2010, A microflare with hard X-ray-correlated gyroresonance line emission at 314 MHz. Astron. Astrophys. 515, A1-1-9. doi: 10.1051/0004-6361/200913132. CrossRefADSGoogle Scholar
  4. Cairns, R.: 1985, Plasma Physics, Blackie, Glasgow, 124 – 128. Google Scholar
  5. Ginzburg, V.L., Zhelezniakov, V.V.: 1958, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Sov. Astron. 2, 653. ADSGoogle Scholar
  6. Hillaris, A., Alissandrakis, C.E., Vlahos, L.: 1988, Dynamics of sub-relativistic electron beams in magnetic traps – A model for solar N-bursts. Astron. Astrophys. 195, 301 – 309. ADSGoogle Scholar
  7. Hillaris, A., Alissandrakis, C.E., Caroubalos, C., Bougeret, J.: 1990, Computation of electron beam parameters for solar type III and J bursts. Astron. Astrophys. 229, 216 – 223. ADSGoogle Scholar
  8. Hillaris, A., Alissandrakis, C.E., Bougeret, J., Caroubalos, C.: 1999, Dynamics of subrelativistic electron beams in the solar corona. Type III group analysis. Astron. Astrophys. 342, 271 – 278. ADSGoogle Scholar
  9. Hsu, J.: 2010, Relativistic theory of mode conversion at plasma frequency. Phys. Plasmas 17(3), 032104. doi: 10.1063/1.3322854. CrossRefADSGoogle Scholar
  10. Kaplan, S.A., Tsytovich, V.N.: 1968, Radio emission from beams of fast particles under cosmic conditions. Sov. Astron. 11, 956 – 964. ADSGoogle Scholar
  11. Karlický, M., Kosugi, T.: 2004, Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159 – 1168. doi: 10.1051/0004-6361:20034323. CrossRefADSGoogle Scholar
  12. Kasaba, Y., Matsumoto, H., Omura, Y.: 2001, One- and two-dimensional simulations of electron beam instability: Generation of electrostatic and electromagnetic 2f p waves. J. Geophys. Res. 106, 18693 – 18712. doi: 10.1029/2000JA000329. CrossRefADSGoogle Scholar
  13. Kontar, E.P., Pécseli, H.L.: 2002, Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E 65(6), 066408. doi: 10.1103/PhysRevE.65.066408. CrossRefADSGoogle Scholar
  14. Li, B., Cairns, I.H., Robinson, P.A.: 2008, Simulations of coronal type III solar radio bursts: 1. Simulation model. J. Geophys. Res. 113, 6104. doi: 10.1029/2007JA012957. CrossRefGoogle Scholar
  15. Mel’Nik, V.N., Lapshin, V., Kontar, E.: 1999, Propagation of a monoenergetic electron beam in the solar corona. Solar Phys. 184, 353 – 362. CrossRefADSGoogle Scholar
  16. Melrose, D.B.: 1987, Plasma emission – A review. Solar Phys. 111, 89 – 101. doi: 10.1007/BF00145443. CrossRefADSGoogle Scholar
  17. Nindos, A., Aurass, H., Klein, K., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Invited review. Solar Phys. 253, 3 – 41. doi: 10.1007/s11207-008-9258-9. CrossRefADSGoogle Scholar
  18. Pavlenko, V.P., Petviashvili, V.I.: 1977, Stability and kinetic effects of a standing Langmuir wave. JETP Lett. 26, 200 – 202. ADSGoogle Scholar
  19. Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun – Earth connection. Astron. Astrophys. Rev. 16, 1 – 153. doi: 10.1007/s00159-008-0013-x. CrossRefADSGoogle Scholar
  20. Rhee, T., Ryu, C., Woo, M., Kaang, H.H., Yi, S., Yoon, P.H.: 2009, Multiple harmonic plasma emission. Astrophys. J. 694, 618 – 625. doi: 10.1088/0004-637X/694/1/618. CrossRefADSGoogle Scholar
  21. Robinson, P.A.: 1992, Clumpy Langmuir waves in type III radio sources. Solar Phys. 139, 147 – 163. doi: 10.1007/BF00147886. CrossRefADSGoogle Scholar
  22. Robinson, P.A., Cairns, I.H., Gurnett, D.A.: 1992, Connection between ambient density fluctuations and clumpy Langmuir waves in type III radio sources. Astrophys. J. 387, L101 – L104. doi: 10.1086/186315. CrossRefADSGoogle Scholar
  23. Rukhadze, A.A., Silin, V.P.: 1964, Reviews of topical problems: method of geometrical optics in the electrodynamics of AN inhomogeneous plasma. Sov. Phys. Usp. 7, 209 – 229. doi: 10.1070/PU1964v007n02ABEH003662. CrossRefMathSciNetADSGoogle Scholar
  24. Sakai, J.I., Kitamoto, T., Saito, S.: 2005, Simulation of solar type III radio bursts from a magnetic reconnection region. Astrophys. J. 622, L157 – L160. doi: 10.1086/429665. CrossRefADSGoogle Scholar
  25. Sircombe, N.J., Arber, T.D.: 2009, VALIS: A split-conservative scheme for the relativistic 2D Vlasov – Maxwell system. J. Comput. Phys. 228, 4773 – 4788. doi: 10.1016/j.jcp.2009.03.029. zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. Smith, D.F.: 1970, Type III solar radio bursts. Adv. Astron. Astrophys. 7, 147 – 226. ADSGoogle Scholar
  27. Tsiklauri, D., Sakai, J., Saito, S.: 2005, Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas. Astron. Astrophys. 435, 1105 – 1113. doi: 10.1051/0004-6361:20042436. CrossRefADSGoogle Scholar
  28. Umeda, T.: 2010, Electromagnetic plasma emission during beam – plasma interaction: Parametric decay versus induced scattering. J. Geophys. Res. 115, 1204. doi: 10.1029/2009JA014643. CrossRefGoogle Scholar
  29. Yin, L., Ashour-Abdalla, M., El-Alaoui, M., Bosqued, J.M., Bougeret, J.L.: 1998, Generation of electromagnetic f pe and 2f pe waves in the Earth’s electron foreshock via linear mode conversion. Geophys. Res. Lett. 25, 2609 – 2612. doi: 10.1029/98GL01989. CrossRefADSGoogle Scholar
  30. Zaitsev, V.V., Mityakov, N.A., Rapoport, V.O.: 1972, A dynamic theory of type III solar radio bursts. Solar Phys. 24, 444 – 456. doi: 10.1007/BF00153387. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Astronomy Unit, School of Mathematical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations