Advertisement

Solar Physics

, Volume 268, Issue 1, pp 57–102 | Cite as

The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory

  • V. Martínez PilletEmail author
  • J. C. del Toro Iniesta
  • A. Álvarez-Herrero
  • V. Domingo
  • J. A. Bonet
  • L. González Fernández
  • A. López Jiménez
  • C. Pastor
  • J. L. Gasent Blesa
  • P. Mellado
  • J. Piqueras
  • B. Aparicio
  • M. Balaguer
  • E. Ballesteros
  • T. Belenguer
  • L. R. Bellot Rubio
  • T. Berkefeld
  • M. Collados
  • W. Deutsch
  • A. Feller
  • F. Girela
  • B. Grauf
  • R. L. Heredero
  • M. Herranz
  • J. M. Jerónimo
  • H. Laguna
  • R. Meller
  • M. Menéndez
  • R. Morales
  • D. Orozco Suárez
  • G. Ramos
  • M. Reina
  • J. L. Ramos
  • P. Rodríguez
  • A. Sánchez
  • N. Uribe-Patarroyo
  • P. Barthol
  • A. Gandorfer
  • M. Knoelker
  • W. Schmidt
  • S. K. Solanki
  • S. Vargas Domínguez
Open Access
The Sunrise Balloon-Borne Observatory

Abstract

The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne solar observatory in June 2009 for almost six days over the Arctic Circle. As a polarimeter, IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual-beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mÅ. IMaX uses the high-Zeeman-sensitive line of Fe i at 5250.2 Å and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15 – 0.18 arcsec range over a 50×50 arcsec field of view. Time cadences vary between 10 and 33 s, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are 4 G for longitudinal fields and 80 G for transverse fields per wavelength sample. The line-of-sight velocities are estimated with statistical errors of the order of 5 – 40 m s−1. The design, calibration, and integration phases of the instrument, together with the implemented data reduction scheme, are described in some detail.

Keywords

Instrumentation and data management Integrated Sun observations polarization Magnetic fields Velocity fields 

References

  1. Álvarez-Herrero, A., Belenguer, T., Pastor, C., González, L., Heredero, R.L., Ramos, G., et al.: 2006a, In: Mather, J.C., MacEwen, H.A., de Graauw, M.W.M. (eds.) Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, Proc. SPIE 6265, 62654C. Google Scholar
  2. Álvarez-Herrero, A., Belenguer, T., Pastor, C., Heredero, R.L., Ramos, G., Martínez Pillet, V., Bonet Navarro, J.A.: 2006b, In: Mather, J.C., MacEwen, H.A., de Graauw, M.W.M. (eds.) Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, Proc. SPIE 6265, 62652G. Google Scholar
  3. Arkwright, J., Underhill, I., Pereira, N., Gross, M.: 2005, Opt. Express 13, 2731. CrossRefADSGoogle Scholar
  4. Atherton, P.D., Reay, N.K., Ring, J., Hicks, T.R.: 1982, Opt. Eng. 20, 806. ADSGoogle Scholar
  5. Barthol, P., Gandorfer, A., Solanki, S.K., Schüssler, M., Chares, B., Curdt, W., et al.: 2010, Solar Phys., this issue. doi: 10.1007/s11207-010-9662-9.
  6. Bello González, N.: Kneer, F., 2008, Astron. Astrophys. 480, 265. CrossRefADSGoogle Scholar
  7. Berkefeld, T., Schmidt, W., Soltau, D., Bell, A., Doerr, H.P., Feger, B., et al.: 2010, Solar Phys. doi: 10.1007/s11207-010-9676-3.
  8. Bernasconi, P., Rust, D., Eaton, H., Murphy, G.: 2000, In: Melugin, R.K., Roeser, H.-P. (eds.) Airborne Telescope Systems, Proc. SPIE 4014, 214. Google Scholar
  9. Brault, J.W., White, O.R.: 1971, Astron. Astrophys. 13, 169. ADSGoogle Scholar
  10. Collados, M.: 2009, In: Proc. 12th European Solar Physics Meeting. http://espm.kis.uni-freiburg.de/, t_6-04.
  11. Collados, M., Lagg, A., Díaz García, J.J., Hernández Suárez, E., López López, R., Paéz Mañá, E., Solanki, S.K.: 2007, In: Heinzel, P., Dorotovic, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, ASP Conf. Ser. 368, 611. Google Scholar
  12. Del Toro Iniesta, J.C.: 2003, Introduction to Spectropolarimetry, Cambridge. Google Scholar
  13. Del Toro Iniesta, J.C., Collados, M.: 2000, Appl. Opt. 39, 1637. CrossRefADSGoogle Scholar
  14. Elmore, D.F., Lites, B.W., Tomczyk, S., Skumanich, A.P., Dunn, R.B., Schuenke, J.A., Streander, K.V., Leach, T.W., Chambellan, C.W., Hull, H.K.: 1992, In: Goldstein, D.H., Chipman, R.A. (eds.) Polarization Analysis and Measurement, Proc. SPIE 1746, 22. Google Scholar
  15. Gandorfer, A., Steiner, H.P., Povel, P., Aebersold, F., Egger, U., Feller, A., Gisler, D., Hagenbuch, S., Stenflo, J.O.: 2004, Astron. Astrophys. 422, 703. CrossRefADSGoogle Scholar
  16. Gandorfer, A., Grauf, B., Barthol, P., Riethmüller, T.L., Solanki, S.K., Chares, B., et al.: 2010, Solar Phys., this issue. doi: 10.1007/s11207-010-9636-y.
  17. Gary, G.A., Balasubramaniam, K.S., Sigwarth, M.: 2003, In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 252. Google Scholar
  18. Gerstenkorn, S., Luc, P.: 1978, Atlas du Spectre d’Absorption de la Molecule d’Iode, CNRS, Orsay. Google Scholar
  19. Heredero, R.L., Uribe-Patarroyo, N., Belenguer, T., Ramos, G., Sánchez, A., Reina, M., Martínez Pillet, V., Álvarez-Herrero, A.: 2007, Appl. Opt. 46, 689. CrossRefADSGoogle Scholar
  20. Holweger, H., Mueller, E.A.: 1974, Solar Phys. 39, 19. CrossRefADSGoogle Scholar
  21. Kentischer, T.J., Schmidt, W., Sigwarth, M., Uexkuell, M.V.: 1998, Astron. Astrophys. 340, 569. ADSGoogle Scholar
  22. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., et al.: 2007, Solar Phys. 243, 3. CrossRefADSGoogle Scholar
  23. Lites, B.W.: 1987, Appl. Opt. 26, 3838. CrossRefADSGoogle Scholar
  24. Lites, B.W., Elmore, D.F., Streander, K.V.: 2001, In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ASP Conf. Ser. 236, 33. Google Scholar
  25. Lites, B.W., Scharmer, G.B., Berger, T.E., Title, A.M.: 2004, Solar Phys. 221, 65. CrossRefADSGoogle Scholar
  26. Lites, B.W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., et al.: 2008, Astrophys. J. 672, 1237. CrossRefADSGoogle Scholar
  27. Martínez Pillet, V.: 2006, In: Marsden, R., Conroy, L. (eds.) Proc. Second Solar Orbiter Workshop, ESA SP-641 (on CD-ROM). Google Scholar
  28. Martínez Pillet, V., Collados, M., Sánchez Almeida, J., González, V., Cruz-Lopez, A., Manescau, A., et al.: 1999, In: Rimmele, T.R., Balasubramaniam, K.S., Radick, R.R. (eds.) High Resolution Solar Physics: Theory, Observations, and Techniques, ASP Conf. Ser. 183, 264. Google Scholar
  29. Martínez Pillet, V., Bonet, J.A., Collados, M.V., Jochum, L., Mathew, S., Medina Trujillo, J.L., et al.: 2004, In: Mather, J.C. (ed.) Optical, Infrared, and Millimeter Space Telescopes, Proc. SPIE 5487, 1152. Google Scholar
  30. Noll, R.J.: 1976, J. Opt. Soc. Am. 66, 207. CrossRefADSGoogle Scholar
  31. Orozco Suárez, D.: 2008, Diffraction-Limited Spectropolarimetry of Quiet-Sun Magnetic Fields, Ph.D. thesis, University of Granada. Google Scholar
  32. Orozco Suárez, D., Bellot Rubio, L.R., Martínez Pillet, V., Bonet, J.A., Vargas Domínguez, S., et al.: 2010, Astron. Astrophys., in press. Google Scholar
  33. Paxman, R.G., Seldin, J.H., Loefdahl, M.G., Scharmer, G.B., Keller, C.U.: 1996, Astrophys. J. 466, 1087. CrossRefADSGoogle Scholar
  34. Pietarila Graham, J., Danilovic, S., Schüssler, M.: 2009, Astrophys. J. 693, 1728. CrossRefADSGoogle Scholar
  35. Puschmann, K.G., Kneer, F., Seelemann, T., Wittmann, A.D.: 2006, Astron. Astrophys. 451, 1151. CrossRefADSGoogle Scholar
  36. Rimmele, T., Keil, S., Wagner, J., Team, A.T.S.T.: 2009, In: Proc. 12th European Solar Physics Meeting, http://espm.kis.uni-freiburg.de/, t_6-03.
  37. Scharmer, G.: 2006, Astron. Astrophys. 447, 1111. CrossRefADSGoogle Scholar
  38. Scharmer, G.: 2009, Space Sci. Rev. 144, 229. CrossRefADSGoogle Scholar
  39. Scharmer, G.B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M.G., Kiselman, D., Sütterlin, P., van Noort, M., Lagg, A.: 2008, Astrophys. J. Lett. 689, 69. CrossRefADSGoogle Scholar
  40. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129. CrossRefADSGoogle Scholar
  41. Shimizu, T., Nagata, S., Tsuneta, S., Tarbell, T., Edwards, C., Shine, R., et al.: 2008, Solar Phys. 249, 221. CrossRefADSGoogle Scholar
  42. Solanki, S.K.: 1987, Properties of Solar Magnetic Fluxtubes, Ph.D. thesis, ETH, Zürich. Google Scholar
  43. van Noort, M.J., Rouppe van der Voort, L.H.M.: 2008, Astron. Astrophys. 489, 429. CrossRefADSGoogle Scholar
  44. Vargas Domínguez, S.: 2009, High Resolution Study of Solar Active Regions through Phase Diversity Techniques, Ph.D. thesis, University of La Laguna. Google Scholar
  45. Viticchié, B., Del Moro, D., Berrilli, F., Bellot Rubio, L., Tritschler, A.: 2009, Astrophys. J. Lett. 700, 145. CrossRefADSGoogle Scholar
  46. von der Lühe, O., Kentischer, Th.J.: 2000, Astron. Astrophys. 146, 499. Google Scholar
  47. Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Astron. Astrophys. 429, 335. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • V. Martínez Pillet
    • 1
    Email author
  • J. C. del Toro Iniesta
    • 2
  • A. Álvarez-Herrero
    • 3
  • V. Domingo
    • 4
  • J. A. Bonet
    • 1
  • L. González Fernández
    • 3
  • A. López Jiménez
    • 2
  • C. Pastor
    • 3
  • J. L. Gasent Blesa
    • 4
  • P. Mellado
    • 2
  • J. Piqueras
    • 5
  • B. Aparicio
    • 2
  • M. Balaguer
    • 2
  • E. Ballesteros
    • 1
  • T. Belenguer
    • 3
  • L. R. Bellot Rubio
    • 2
  • T. Berkefeld
    • 6
  • M. Collados
    • 1
  • W. Deutsch
    • 5
  • A. Feller
    • 5
  • F. Girela
    • 2
  • B. Grauf
    • 5
  • R. L. Heredero
    • 3
  • M. Herranz
    • 2
  • J. M. Jerónimo
    • 2
  • H. Laguna
    • 3
  • R. Meller
    • 5
  • M. Menéndez
    • 3
  • R. Morales
    • 2
  • D. Orozco Suárez
    • 2
  • G. Ramos
    • 3
  • M. Reina
    • 3
  • J. L. Ramos
    • 2
  • P. Rodríguez
    • 4
  • A. Sánchez
    • 3
  • N. Uribe-Patarroyo
    • 3
  • P. Barthol
    • 5
  • A. Gandorfer
    • 5
  • M. Knoelker
    • 7
  • W. Schmidt
    • 6
  • S. K. Solanki
    • 5
  • S. Vargas Domínguez
    • 1
  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  2. 2.Instituto de Astrofísica de Andalucía (CSIC)GranadaSpain
  3. 3.Instituto Nacional de Técnica AeroespacialTorrejón de Ardoz, MadridSpain
  4. 4.Grupo de Astronomía y Ciencias del EspacioUniv. de ValenciaPaternaSpain
  5. 5.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  6. 6.Kiepenheuer-Institut für SonnenphysikFreiburgGermany
  7. 7.High Altitude Observatory (NCAR)BoulderUSA

Personalised recommendations