Solar Physics

, Volume 266, Issue 2, pp 227–246 | Cite as

A New Way that Planets Can Affect the Sun

Article

Abstract

We derive a perturbation inside a rotating star that occurs when the star is accelerated by orbiting bodies. If a fluid element has rotational and orbital components of angular momentum with respect to the inertially fixed point of a planetary system that are of opposite sign, then the element may have potential energy that could be released by a suitable flow. We demonstrate the energy with a very simple model in which two fluid elements of equal mass exchange positions, calling to mind a turbulent field or natural convection. The exchange releases potential energy that, with a minor exception, is available only in the hemisphere facing the barycenter of the planetary system. We calculate its strength and spatial distribution for the strongest case (“vertical”) and for weaker horizontal cases whose motions are all perpendicular to gravity. The vertical cases can raise the kinetic energy of a few well positioned convecting elements in the Sun’s envelope by a factor ≤7. This is the first physical mechanism by which planets can have a nontrivial effect on internal solar motions. Occasional small mass exchanges near the solar center and in a recently proposed mixed shell centered at 0.16Rs would carry fresh fuel to deeper levels. This would cause stars like the Sun with appropriate planetary systems to burn somewhat more brightly and have shorter lifetimes than identical stars without planets. The helioseismic sound speed and the long record of sunspot activity offer several bits of evidence that the effect may have been active in the Sun’s core, its envelope, and in some vertically stable layers. Additional proof will require direct evidence from helioseismology or from transient waves on the solar surface.

Keywords

Convection Solar activity Solar interior motions Sun – planet interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athay, R.G., Moreton, G.E.: 1961, Impulsive phenomena of the solar atmosphere. I. Some optical events associated with flares showing explosive phase. Astrophys. J. Lett. 133, 935. doi:10.1086/147098. CrossRefADSGoogle Scholar
  2. Bigg, E.K., Mulhall, P.S.: 1967, Planetary modulation of solar activity. Proc. Astron. Soc. Aust. 1, 53. ADSGoogle Scholar
  3. Blizard, J.B.: 1987, In: Climate History, Periodicity & Predictability, 415 – 420. Google Scholar
  4. Bureau, R.A., Craine, L.B.: 1970, Physical sciences: sunspots and planetary orbits. Nature 228, 984. doi:10.1038/228984a0. CrossRefADSGoogle Scholar
  5. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability. Google Scholar
  6. Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., Tomczyk, S.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. Lett. 527, 445 – 460. doi:10.1086/308050. CrossRefADSGoogle Scholar
  7. Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J., Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286 – 1292. doi:10.1126/science.272.5266.1286. CrossRefADSGoogle Scholar
  8. de Jager, C., Versteegh, G.J.M.: 2005, Do planetary motions drive solar variability? Solar Phys. 229, 175 – 179. doi:10.1007/s11207-005-4086-7. CrossRefADSGoogle Scholar
  9. Dodson, H.W., Hedeman, E.R.: 1972, Time variations in solar activity. In: The Sun: Part I of Solar-Terrestrial Physics/1970, 151 – 172. Google Scholar
  10. Fairbridge, R.W., Shirley, J.H.: 1987, Prolonged minima and the 179-yr cycle of the solar inertial motion. Solar Phys. 110, 191 – 210. doi:10.1007/BF00148211. CrossRefADSGoogle Scholar
  11. García, R.A., Jiménez, A., Mathur, S., Ballot, J., Eff-Darwich, A., Jiménez-Reyes, S.J., Pallé, P.L., Provost, J., Turck-Chièze, S.: 2008, Update on g-mode research. Astron. Nachr. 329, 476 – 484. doi:10.1002/asna.200710980. CrossRefADSGoogle Scholar
  12. Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456 – 2460. doi:10.1126/science.287.5462.2456. CrossRefADSGoogle Scholar
  13. Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193 – 200. doi:10.1086/109714. CrossRefADSGoogle Scholar
  14. Juckett, D.A.: 2000, Solar activity cycles, north/south asymmetries, and differential rotation associated with solar spin – orbit variations. Solar Phys. 191, 201 – 226. CrossRefADSGoogle Scholar
  15. Juckett, D.A.: 2003, Temporal variations of low-order spherical harmonic representations of sunspot group patterns: evidence for solar spin – orbit coupling. Astron. Astrophys. 399, 731 – 741. doi:10.1051/0004-6361:20021923. CrossRefADSGoogle Scholar
  16. Kippenhahn, R., Weigert, A.: 1990, Stellar Structure and Evolution, Astron. Astrophys. Lib. CVI, Springer, Berlin. Google Scholar
  17. Komm, R., Howe, R., Durney, B.R., Hill, F.: 2003, Temporal variation of angular momentum in the solar convection zone. Astrophys. J. Lett. 586, 650 – 662. doi:10.1086/367608. CrossRefADSGoogle Scholar
  18. Landscheidt, T.: 1999, Extrema in sunspot cycle linked to Sun’s motion. Solar Phys. 189, 415 – 426. CrossRefADSGoogle Scholar
  19. Miesch, M.S.: 2003, Numerical modeling of the solar tachocline. II. Forced turbulence with imposed shear. Astrophys. J. Lett. 586, 663 – 684. doi:10.1086/367616. CrossRefADSGoogle Scholar
  20. Öpik, E.: 1972, News and comments, planetary tides and sunspots. Irish Astron. J. 10, 266 – 274. ADSGoogle Scholar
  21. Schatten, K.H.: 2009, Modeling a shallow solar dynamo. Solar Phys. 255, 3 – 38. doi:10.1007/s11207-008-9308-3. CrossRefADSGoogle Scholar
  22. Shirley, J.H.: 2006, Axial rotation, orbital revolution and solar spin – orbit coupling. Mon. Not. R. Astron. Soc. 368, 280 – 282. doi:10.1111/j.1365-2966.2006.10107.x. ADSGoogle Scholar
  23. Wolf, R.: 1859a, Extract of a letter to Mr. Carrington. Mon. Not. R. Astron. Soc. 19, 85 – 86. ADSGoogle Scholar
  24. Wolf, R.: 1859b, Mittheilungen über die Sonnenflecken. Mitt. Astron. Zurich 8, 183. Google Scholar
  25. Wolff, C.L.: 2002, Rotational sequences of global oscillations inside the Sun. Astrophys. J. Lett. 580, 181 – 184. doi:10.1086/345712. CrossRefADSGoogle Scholar
  26. Wolff, C.L.: 2009, Effects of a deep mixed shell on solar g-modes, p-modes, and neutrino flux. Astrophys. J. Lett. 701, 686 – 697. doi:10.1088/0004-637X/701/1/686. CrossRefADSGoogle Scholar
  27. Wolff, C.L., Mayr, H.G.: 2004, The Sun’s reversing flows and heat spike as caused by g-modes. Astrophys. J. Lett. 606, 163 – 166. doi:10.1086/421327. CrossRefADSGoogle Scholar
  28. Wolff, C.L., O’Donovan, A.E.: 2007, Coupled groups of g-modes in a Sun with a mixed core. Astrophys. J. 661, 568 – 585. doi:10.1086/513305. CrossRefADSGoogle Scholar
  29. Wood, K.D.: 1972, Physical sciences: sunspots and planets. Nature 240, 91 – 93. doi:10.1038/240091a0. CrossRefADSGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations