Solar Physics

, Volume 265, Issue 1–2, pp 49–127 | Cite as

From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection

  • M. M. Bisi
  • A. R. Breen
  • B. V. Jackson
  • R. A. Fallows
  • A. P. Walsh
  • Z. Mikić
  • P. Riley
  • C. J. Owen
  • A. Gonzalez-Esparza
  • E. Aguilar-Rodriguez
  • H. Morgan
  • E. A. Jensen
  • A. G. Wood
  • M. J. Owens
  • M. Tokumaru
  • P. K. Manoharan
  • I. V. Chashei
  • A. S. Giunta
  • J. A. Linker
  • V. I. Shishov
  • S. A. Tyul’bashev
  • G. Agalya
  • S. K. Glubokova
  • M. S. Hamilton
  • K. Fujiki
  • P. P. Hick
  • J. M. Clover
  • B. Pintér
Open Access
Remote Sensing of the Inner Heliosphere

Abstract

We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.

Keywords

Active regions, magnetic fields Corona, models Corona, radio emission Coronal mass ejections, initiation and propagation Coronal mass ejections, interplanetary Magnetic fields, interplanetary Magnetic fields, models Radio bursts, association with flares Radio scintillation Solar wind, disturbances Sunspots, magnetic fields Velocity fields, solar wind X-ray bursts, association with flares 

References

  1. Abramenko, V.I., Yurchishin, V.B.: 1996, Modeling of a linear force-free magnetic field in a bounded domain. Solar Phys. 168, 47 – 63. doi:10.1007/BF00145824. ADSCrossRefGoogle Scholar
  2. Aguilar-Rodriguez, E., Gopalswamy, N., MacDowall, R., Yashiro, S., Kaiser, M.L.: 2005, A universal characteristic of type II radio bursts. J. Geophys. Res. 110(A9), 12. doi:10.1029/2005JA011171. Google Scholar
  3. Armstrong, J.W., Coles, W.A.: 1972, Analysis of three-station interplanetary scintillation data. J. Geophys. Res. 77, 4602. ADSCrossRefGoogle Scholar
  4. Balogh, A., Carr, C.M., Acuna, M.H., Dunlop, M.W., Beek, T.J., Brown, P., Fornacon, K.H., Georgescu, E., Glassmeier, K.H., Harris, J., Musmann, G., Oddy, T., Schwingenschuh, K.: 2001, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19(10–12, Sp. Iss. SI), 1207 – 1217. ADSCrossRefGoogle Scholar
  5. Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The Ulysses solar wind plasma experiment. Astron. Astrophys. Suppl. 92(2), 237. ADSGoogle Scholar
  6. Bame, S.J., McComas, D.J., Thomsen, M.F., Barraclough, B.L., Elphic, R.C., Glore, J.P., Gosling, J.T., Chavez, J.C., Evana, E.P., Wymer, F.J.: 1993, Magnetospheric plasma analyzer for spacecraft with constrained resources. Rev. Sci. Inst. 64(4), 1026 – 1033. ADSCrossRefGoogle Scholar
  7. Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478, 897 – 906. doi:10.1051/0004-6361:20078615. ADSCrossRefGoogle Scholar
  8. Bisi, M.M.: 2006, Interplanetary scintillation studies of the large-scale structure of the solar wind. Ph.D. Thesis, The University of Wales, Aberystwyth. Google Scholar
  9. Bisi, M.M., Breen, A.R., Fallows, R.A., Thomasson, P., Jones, R.A., Wannberg, G.: 2005, Combined EISCAT/ESR/MERLIN Interplanetary Scintillation Observations of the Solar Wind. In: ESA SP-592: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere 16. European Space Agency, 593 – 596. Google Scholar
  10. Bisi, M.M., Breen, A.R., Fallows, R.A., Dorrian, G.D., Jones, R.A., Wannberg, G., Thomasson, P., Jordan, C.: 2006, Off-radial flow of the solar wind from EISCAT and MERLIN IPS observations. In: EOS Trans. AGU, Fall Meeting Supp. – Abstract SH33A-0399 87, 52. Google Scholar
  11. Bisi, M.M., Fallows, R.A., Breen, A.R., Habbal, S.R., Jones, R.A.: 2007a, Large-scale structure of the fast solar wind. J. Geophys. Res. 112, A06101. doi:10.1029/2006JA012166. CrossRefGoogle Scholar
  12. Bisi, M.M., Jackson, B.V., Fallows, R.A., Breen, A.R., Hick, P.P., Wannberg, G., Thomasson, P., Jordan, C.A., Dorrian, G.D.: 2007b, Combined STELab, EISCAT, ESR, and MERLIN IPS observations of the solar wind. Proc. SPIE 6689, 668911-1. doi:10.1117/12.735443. Google Scholar
  13. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Clover, J.M.: 2007c, Coronal Mass Ejection Reconstructions from Interplanetary Scintillation Data Using a Kinematic Model: A Brief Review 14, World Scientific Publishing, Singapore. Chap. 12. Google Scholar
  14. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Clover, J.M.: 2008, Three-dimensional reconstructions of the early November 2004 coordinated data analysis workshop geomagnetic storms: analyses of STELab IPS speed and SMEI density data. J. Geophys. Res. 113(A12), A00A11. doi:10.1029/2008JA013222. CrossRefGoogle Scholar
  15. Bisi, M.M., Jackson, B.V., Buffington, A., Clover, J.M., Hick, P.P., Tokumaru, M.: 2009a, Low-resolution STELab IPS 3D reconstructions of the whole heliosphere interval and comparison with in-ecliptic solar wind measurements from STEREO and wind instrumentation. Solar Phys. 256, 201 – 217. doi:10.1007/s11207-009-9350-9. ADSCrossRefGoogle Scholar
  16. Bisi, M.M., Jackson, B.V., Clover, J.M., Manoharan, P.K., Tokumaru, M., Hick, P.P., Buffington, A.: 2009b, 3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data. Ann. Geophys. 27, 4479 – 4489. ADSCrossRefGoogle Scholar
  17. Bisi, M.M., Fallows, R.A., Breen, A.R., O’Neill, I.J.: 2010a, Interplanetary scintillation observations of stream interaction regions in the solar wind. Solar Phys. 261, 149 – 172, in this issue. doi:10.1007/s11207-009-9471-1. ADSCrossRefGoogle Scholar
  18. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Clover, J.M., Tokumaru, M., Fujiki, K.: 2010b, Three-dimensional reconstructions and mass determination of the 2008 June 2 LASCO coronal mass ejection using STELab interplanetary scintillation observations. Astrophys. J. Lett. 715, L104 – L108. doi:10.1088/2041-8205/715/2/L104. ADSCrossRefGoogle Scholar
  19. Bisi, M.M., Jackson, B.V., Breen, A.R., Dorrian, G.D., Fallows, R.A., Clover, J.M., Hick, P.P.: 2010c, Three-dimensional (3-D) reconstructions of EISCAT IPS velocity data in the declining phase of solar cycle 23. Solar Phys., in press. Google Scholar
  20. Bothmer, V., Schwenn, R.: 1994, Eruptive prominences as sources of magnetic clouds in the solar wind. Space Sci. Rev. 70, 215 – 220. doi:10.1007/BF00777872. ADSCrossRefGoogle Scholar
  21. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24. ADSCrossRefGoogle Scholar
  22. Bougeret, J., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231 – 263. doi:10.1007/BF00751331. ADSCrossRefGoogle Scholar
  23. Bourgois, G., Coles, W.A., Daigne, G., Silen, J., Turunen, T., Williams, P.J.: 1985, Measurements of the solar wind velocity with EISCAT. Astron. Astrophys. 144, 452 – 462. ADSGoogle Scholar
  24. Breen, A.R., Coles, W.A., Grall, R.R., Klinglesmith, M.T., Markkanen, J., Moran, P.J., Tegid, B., Williams, P.J.S.: 1996a, Eiscat measurements of the solar wind. Ann. Geophys. 14, 1235 – 1245. ADSGoogle Scholar
  25. Breen, A.R., Coles, W.A., Grall, R., Løvhaug, U.P., Markkanen, J., Misawa, H., Williams, P.J.S.: 1996b, EISCAT measurements of interplanetary scintillation. J. Atmos. Terr. Phys. 58, 507 – 519. ADSCrossRefGoogle Scholar
  26. Breen, A.R., Riley, P., Lazarus, A.J., Canals, A., Fallows, R.A., Linker, J., Mikić, Z.: 2002, The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations. Ann. Geophys. 20, 1291 – 1309. ADSCrossRefGoogle Scholar
  27. Breen, A.R., Fallows, R.A., Bisi, M.M., Thomasson, P., Jordan, C.A., Wannberg, G., Jones, R.A.: 2006, Extremely long baseline interplanetary scintillation measurements of solar wind velocity. J. Geophys. Res. 111(A10), 8104. doi:10.1029/2005JA011485. CrossRefGoogle Scholar
  28. Breen, A.R., Fallows, R.A., Bisi, M.M., Jones, R.A., Jackson, B.V., Kojima, M., Dorrian, G.D., Middleton, H.R., Thomasson, P., Wannberg, G.: 2008, The solar eruption of 2005 May 13 and its effects: long-baseline interplanetary scintillation observations of the Earth-directed coronal mass ejection. Astrophys. J. Lett. 683, L79 – L82. doi:10.1086/591520. ADSCrossRefGoogle Scholar
  29. Brekke, A.: 1997, Book Review: Physics of the upper polar atmosphere / Wiley, 1997. J. Br. Astron. Assoc. 107, 222. Google Scholar
  30. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. ADSCrossRefGoogle Scholar
  31. Buonsanto, M.J.: 1999, Ionospheric storms – a review. Space Sci. Rev. 88, 563 – 601. doi:10.1023/A:1005107532631. ADSCrossRefGoogle Scholar
  32. Burlaga, L.F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York. Google Scholar
  33. Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725 – 5734. doi:10.1029/JA092iA06p05725. ADSCrossRefGoogle Scholar
  34. Burlaga, L.F., Lepping, R.P., Jones, J.A.: 1990, Global configuration of a magnetic cloud. In: AGU Geophys. Monogr. Ser. 58, AGU, Washington, 373 – 377. Google Scholar
  35. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684. doi:10.1029/JA086iA08p06673. ADSCrossRefGoogle Scholar
  36. Canals, A.: 2002, Interplanetary scintillation studies of the solar wind during the rising phase of the solar cycle. Ph.D. Thesis, The University of Wales, Aberystwyth. Google Scholar
  37. Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869 – 9874. doi:10.1029/JA092iA09p09869. ADSCrossRefGoogle Scholar
  38. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi:10.1029/1999GL900105. ADSCrossRefGoogle Scholar
  39. Coles, W.A.: 1995, Interplanetary scintillation observations of the high-latitude solar wind. Space Sci. Rev. 72, 211 – 222. ADSCrossRefGoogle Scholar
  40. Coles, W.A.: 1996, A bimodal model of the solar wind speed. Astrophys. Space Sci. 243(1), 87 – 96. ADSCrossRefGoogle Scholar
  41. Coles, W.A., Rickett, B.J.: 1976, IPS observations of the solar wind speed out of the ecliptic. J. Geophys. Res. 81, 4797 – 4799. ADSCrossRefGoogle Scholar
  42. Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. (Space Phys.) 114(A13), 2109. doi:10.1029/2008JA013102. CrossRefGoogle Scholar
  43. Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index a.e. and its universal time variations. J. Geophys. Res. 71(3), 785. ADSGoogle Scholar
  44. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Eupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. ADSCrossRefGoogle Scholar
  45. Démoulin, P.: 2008, A review of the quantitative links between CMEs and magnetic clouds. Ann. Geophys. 26, 3113 – 3125. ADSCrossRefGoogle Scholar
  46. Dennis, B.R., Lin, R.P., Canfield, R.C., Crannell, C.J., Emslie, A.G., Holman, G.D., Hudson, H.H., Hurford, G.J., Ling, J.C., Madden, N.W., Ramaty, R.: 1996, High-energy solar spectroscopic imager (HESSI). In: Rust, D.M. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 2804, 228 – 240. Google Scholar
  47. Domingo, V., Fleck, B., Poland, A.I.: 1995, SOHO: The solar and heliospheric observatory. Space Sci. Rev. 72, 81 – 84. ADSCrossRefGoogle Scholar
  48. Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 – 48. doi:10.1103/PhysRevLett.6.47. ADSCrossRefGoogle Scholar
  49. Ebihara, Y., Fok, M., Sazykin, S., Thomsen, M.F., Hairston, M.R., Evans, D.S., Rich, F.J., Ejiri, M.: 2005a, Ring current and the magnetosphere – ionosphere coupling during the superstorm of 20 November 2003. J. Geophys. Res. 110(A9), 9. doi:10.1029/2004JA010924. CrossRefGoogle Scholar
  50. Ebihara, Y., Fok, M., Sazykin, S., Thomsen, M.F., Hairston, M.R., Evans, D.S., Rich, F.J., Ejiri, M.: 2005b, Correction to “Ring current and the magnetosphere – ionosphere coupling during the superstorm of 20 November 2003”. J. Geophys. Res. 110(A9), 10290. doi:10.1029/2005JA011373. CrossRefGoogle Scholar
  51. Eriksson, S., Hairston, M.R., Rich, F.J., Korth, H., Zhang, Y., Anderson, B.J.: 2008, High-latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase. J. Geophys. Res. (Space Phys.) 113(A12). doi:10.1029/2008JA013139.
  52. Escoubet, C.P., Schmidt, R., Goldstein, M.L.: 1997, Cluster – science and mission overview. Space Sci. Rev. 79, 11 – 32. doi:10.1023/A:1004923124586. ADSCrossRefGoogle Scholar
  53. Escoubet, C.P., Fehringer, M., Goldstein, M.: 2001, The Cluster mission – introduction. Ann. Geophys. 19(10–12, Sp. Iss. SI), 1197 – 1200. ADSCrossRefGoogle Scholar
  54. Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The solar mass ejection imager (SMEI). Solar Phys. 217, 319 – 347. ADSCrossRefGoogle Scholar
  55. Fallows, R.A.: 2001, Studies of the solar wind throughout a solar cycle. Ph.D. Thesis, The University of Wales, Aberystwyth. Google Scholar
  56. Fallows, R.A., Breen, A.R., Dorrian, G.D.: 2008, Developments in the use of EISCAT for interplanetary scintillation. Ann. Geophys. 26, 2229 – 2236. ADSCrossRefGoogle Scholar
  57. Fallows, R.A., Breen, A.R., Bisi, M.M., Jones, R.A., Wannberg, G.: 2006, Dual-frequency interplanetary scintillation observations of the solar wind. Geophys. Res. Lett. 33, 11106. doi:10.1029/2006GL025804. ADSCrossRefGoogle Scholar
  58. Fallows, R.A., Breen, A.R., Bisi, M.M., Jones, R.A., Dorrian, G.D.: 2007, Interplanetary scintillation using EISCAT and MERLIN: extremely long baselines at multiple frequencies. Astron. Astrophys. Trans. 26, 489 – 500. doi:10.1080/10556790701612197. ADSCrossRefGoogle Scholar
  59. Fossi, B.C.M., Noci, G., Poletto, G.: 1992, The Ulysses space mission. Nuovo Cimento C, Geophys. Space Phys. C 15, 493 – 500. ADSGoogle Scholar
  60. Freeman, M.P., Farrugia, C.J., Burlaga, L.F., Hairston, M.R., Greenspan, M.E., Ruohoniemi, J.M., Lepping, R.P.: 1993, The interaction of a magnetic cloud with the Earth – ionospheric convection in the northern and southern hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions. J. Geophys. Res. 98, 7633 – 7655. doi:10.1029/92JA02350. ADSCrossRefGoogle Scholar
  61. Gibson, W.C., Burch, J.L., Scherrer, J.R., Tapley, M.B., Killough, R.L., Volpe, F.A., Davis, W.D., Vaccarello, D.C., Grismore, G., Sakkas, D., Housten, S.J.: 2000, The IMAGE observatory. Space Sci. Rev. 91(1–2), 15 – 50. ADSCrossRefGoogle Scholar
  62. Gold, R.E., Krimigis, S.M., Hawkins, S.E. III, Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev. 86, 541 – 562. doi:10.1023/A:1005088115759. ADSCrossRefGoogle Scholar
  63. Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: NASA Conference Publication 228, 731 – 733. Google Scholar
  64. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, W.W., Rostoker, G., Tsurutani, B., Vasyliunas, V.M.: 1994, What is a geomagnetic storm. J. Geophys. Res. 99(A4), 5771 – 5792. ADSCrossRefGoogle Scholar
  65. Gonzalez-Esparza, J.A., Aguilar-Rodriguez, E.: 2009, Speed evolution of fast CME/Shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric Type-II emissions. Ann. Geophys. 27, 3957 – 3966. ADSCrossRefGoogle Scholar
  66. Gopalswamy, N.: 2004, Interplanetary radio bursts. In: Gary, D.E., Keller, C.U. (eds.) Solar and Space Weather Radio Physics: Current Status and Future Developments 2004, Astrophysics and Space Science Library 314, Kluwer Academic, Dordrecht, 305 – 333. Google Scholar
  67. Gopalswamy, N.: 2010, Large-scale solar eruptions. In: Gopalswamy, N., Hasan, S.S., Ambastha, A. (eds.) Heliophysical Processes, Astrophysics and Space Science Proceedings, Springer, Berlin, 53, Chap. 4. doi:10.1007/978-3-642-11341-3_4. CrossRefGoogle Scholar
  68. Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110(A9), 12. doi:10.1029/2005JA011158. Google Scholar
  69. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: AGU Geophys. Monogr. Ser. 58, AGU, Washington, 343 – 364. Google Scholar
  70. Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937 – 18949. doi:10.1029/93JA01896. ADSCrossRefGoogle Scholar
  71. Gosling, J.T., McComas, D.J., Skoug, R.M., Smith, C.W.: 2006, Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind. Geophys. Res. Lett. 33, 17102. doi:10.1029/2006GL027188. ADSCrossRefGoogle Scholar
  72. Haider, S.A., Abdu, M.A., Batista, I.S., Sobral, J.H., Kallio, E., Maguire, W.C., Verigin, M.I.: 2009, On the responses to solar X-ray flare and coronal mass ejection in the ionospheres of Mars and Earth. Geophys. Res. Lett. 36, 13104. doi:10.1029/2009GL038694. ADSCrossRefGoogle Scholar
  73. Hanuise, C., Cerisier, J.C., Auchère, F., Bocchialini, K., Bruinsma, S., Cornilleau-Wehrlin, N., Jakowski, N., Lathuillère, C., Menvielle, M., Valette, J., Vilmer, N., Watermann, J., Yaya, P.: 2006, From the Sun to the Earth: impact of the 27 – 28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere. Ann. Geophys. 24, 129 – 151. ADSCrossRefGoogle Scholar
  74. Hargreaves, J.K.: 1992, The solar-terrestrial environment: an introduction to geospace – the science of the terrestrial upper atmosphere, ionosphere and magnetosphere. Comb. Atmos. Space Sci. Ser. 5. Google Scholar
  75. Harrison, R.A.: 2003, SOHO observations relating to the association between flares and coronal mass ejections. Adv. Space Res. 32, 2425 – 2437. doi:10.1016/S0273-1177(03)90412-1. ADSGoogle Scholar
  76. Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., Hayes, R.W., Kent, B.J., Lang, J., Parker, D.J., Payne, J., Pike, C.D., Peskett, S.C., Richards, A.G., Gulhane, J.L., Norman, K., Breeveld, A.A., Breeveld, E.R., Al Janabi, K.F., McCalden, A.J., Parkinson, J.H., Self, D.G., Thomas, P.D., Poland, A.I., Thomas, R.J., Thompson, W.T., Kjeldseth-Moe, O., Brekke, P., Karud, J., Maltby, P., Aschenbach, B., Bräuninger, H., Kühne, M., Hollandt, J., Siegmund, O.H.W., Huber, M.C.E., Gabriel, A.H., Mason, H.E., Bromage, B.J.I.: 1995, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Solar Phys. 162, 233 – 290. doi:10.1007/BF00733431. ADSCrossRefGoogle Scholar
  77. Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillations of small diameter radio sources. Nature 203, 1214. ADSCrossRefGoogle Scholar
  78. Hill, S.M., Pizzo, V.J., Balch, C.C., Biesecker, D.A., Bornmann, P., Hildner, E., Lewis, L.D., Grubb, R.N., Husler, M.P., Prendergast, K., Vickroy, J., Greer, S., Defoor, T., Wilkinson, D.C., Hooker, R., Mulligan, P., Chipman, E., Bysal, H., Douglas, J.P., Reynolds, R., Davis, J.M., Wallace, K.S., Russell, K., Freestone, K., Bagdigian, D., Page, T., Kerns, S., Hoffman, R., Cauffman, S.A., Davis, M.A., Studer, R., Berthiaume, F.E., Saha, T.T., Berthiume, G.D., Farthing, H., Zimmermann, F.: 2005, The NOAA Goes-12 solar X-ray imager (SXI) 1. Instrument, operations, and data. Solar Phys. 226, 255 – 281. doi:10.1007/s11207-005-7416-x. ADSCrossRefGoogle Scholar
  79. Hovestadt, D., Hilchenbach, M., Bürgi, A., Klecker, B., Laeverenz, P., Scholer, M., Grünwaldt, H., Axford, W.I., Livi, S., Marsch, E., Wilken, B., Winterhoff, H.P., Ipavich, F.M., Bedini, P., Coplan, M.A., Galvin, A.B., Gloeckler, G., Bochsler, P., Balsiger, H., Fischer, J., Geiss, J., Kallenbach, R., Wurz, P., Reiche, K., Gliem, F., Judge, D.L., Ogawa, H.S., Hsieh, K.C., Möbius, E., Lee, M.A., Managadze, G.G., Verigin, M.I., Neugebauer, M.: 1995, CELIAS – charge, element and isotope analysis system for SOHO. Solar Phys. 162, 441 – 481. doi:10.1007/BF00733436. ADSCrossRefGoogle Scholar
  80. Jackson, B.V., Hick, P.P.: 2005, Three-dimensional tomography of interplanetary disturbances. In: Gary, D., Keller, C.U. (eds.) Solar and Space Weather Radiophysics: Current Status and Future Developments, Astrophysics and Space Science Library 314, Kluwer Academic, Dordrecht, 355 – 386. Chap. 17. CrossRefGoogle Scholar
  81. Jackson, B.V., Hick, P.P., Kojima, M., Yokobe, A.: 1998, Heliospheric tomography using interplanetary scintillation observations, 1. Combined Nagoya and Cambridge data. J. Geophys. Res. 103(A6), 12049 – 12067. ADSCrossRefGoogle Scholar
  82. Jackson, B.V., Hick, P.P., Buffington, A., Kojima, M., Tokumaru, M., Fujiki, K., Ohmi, T., Yamashita, M.: 2003, Time-dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote-sensing observations. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, American Institute of Physics Conference Series 679, 75 – 78. doi:10.1063/1.1618545.
  83. Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., Johnston, J.C., Kahler, S.W., Mozer, J.B., Price, S., Radick, R.R., Sagalyn, R., Sinclair, D., Simnett, G.M., Eyles, C.J., Cooke, M.P., Tappin, S.J., Kuchar, T., Mizuno, D., Webb, D.F., Anderson, P.A., Keil, S.L., Gold, R.E., Waltham, N.R.: 2004, The solar mass-ejection imager (SMEI) mission. Solar Phys. 225, 177 – 207. doi:10.1007/s11207-004-2766-3. ADSCrossRefGoogle Scholar
  84. Jackson, B.V., Buffington, A., Hick, P.P., Wang, X., Webb, D.: 2006, Preliminary three-dimensional analysis of the heliospheric response to the 28 October 2003 CME using SMEI white-light observations. J. Geophys. Res. 111(A10), 4. doi:10.1029/2004JA010942. Google Scholar
  85. Jackson, B.V., Bisi, M.M., Hick, P.P., Buffington, A., Clover, J.M., Sun, W.: 2008, Solar mass ejection imager (SMEI) 3D reconstruction of the 27 – 28 May 2003 CME sequence. J. Geophys. Res. 113(A00A15). doi:10.1029/2008JA013224.
  86. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Hamilton, M.S., Tokumaru, M., Fujiki, K.: 2010, 3D reconstruction of density enhancements behind interplanetary shocks from solar mass ejection imager white-light observations. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) American Institute of Physics Conference Series 1216, 659 – 662. doi:10.1063/1.3395953.
  87. Jain, M., Chauhan, M.L., Shrivastava, S.K., et al.: 2008, On the relationship of Forbush decrease event of May 2005 with solar parameters. In: International Cosmic Ray Conference 1, 295 – 298. Google Scholar
  88. Johnstone, A., Alsop, C., Burge, S., Carter, P.J., Coates, A.J., Coker, A.J., Fazakerley, A.N., Grande, M., Gowen, R.A., Gurgiolo, C., Hancock, B.K., Narheim, B., Preece, A., Sheather, P.H., Winningham, J.D., Woodliffe, R.D.: 1997, Peace: a plasma electron and current experiment. Space Sci. Rev. 79(1–2), 351 – 398. ADSCrossRefGoogle Scholar
  89. Jones, R.A.: 2007, Interplanetary scintillation observations of the inner solar wind. Ph.D. Thesis, The University of Wales, Aberystwyth. Google Scholar
  90. Jones, R.A., Breen, A.R., Fallows, R.A., Bisi, M.M., Thomasson, P., Wannberg, G., Jordan, C.A.: 2006, The solar eruption of May 13 2005: EISCAT and MERLIN observations of a coronal radio burst. Ann. Geophys. 24, 2413 – 2418. www.ann-geophys.net/24/2413/2006/. ADSCrossRefGoogle Scholar
  91. Jones, R.A., Breen, A.R., Fallows, R.A., Canals, A., Bisi, M.M., Lawrence, G.: 2007, Interaction between coronal mass ejections and the solar wind. J. Geophys. Res. 112(A11), 8107. doi:10.1029/2006JA011875. CrossRefGoogle Scholar
  92. Kaiser, M.L.: 2005, The STEREO mission: an overview. Adv. Space Res. 36, 1483 – 1488. doi:10.1016/j.asr.2004.12.066. ADSCrossRefGoogle Scholar
  93. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. doi:10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  94. Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J., Des Jardins, A., Nightingale, R.W.: 2009, Sunspot rotation, flare energetics, and flux rope helicity: the eruptive flare on 2005 May 13. Astrophys. J. 704, 1146 – 1158. doi:10.1088/0004-637X/704/2/1146. ADSCrossRefGoogle Scholar
  95. Keika, K., Nakamura, R., Baumjohann, W., Angelopoulos, V., Chi, P.J., Glassmeier, K.H., Fillingim, M., Magnes, W., Auster, H.U., Fornacon, K.H., Reeves, G.D., Yumoto, K., Lucek, E.A., Carr, C.M., Dandouras, I.: 2009, Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. J. Geophys. Res. 114, A00C24. doi:10.1029/2008JA013445. CrossRefGoogle Scholar
  96. Kleimenova, N.G., Kozyreva, O.V.: 2007, Daytime quasiperiodic geomagnetic pulsations during the recovery phase of the strong magnetic storm of May 15, 2005. Geomagn. Aeron. 47, 580 – 587. doi:10.1134/S0016793207050064. ADSCrossRefGoogle Scholar
  97. Klinglesmith, M.: 1997, The polar solar wind from 2.5 to 40 solar radii: results of intensity scintillation measurements. Ph.D. Thesis, University of California, San Diego (UCSD). Google Scholar
  98. Klinglesmith, M.T., Grall, R.R., Coles, W.A.: 1996, 933 MHz IPS velocity measurements at EISCAT. In: Solar Wind 8 382, 180 – 183. Google Scholar
  99. Kojima, M., Kakinuma, T.: 1987, Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method. J. Geophys. Res. 92, 7269 – 7279. ADSCrossRefGoogle Scholar
  100. Kokubun, S., Yamamoto, T., Acuna, M.H., Hayashi, K., Shiokawa, K., Kawano, H.: 1994, The geotail magnetic-field experiment. J. Geomagn. Geoelectr. 46(1), 7 – 21. Google Scholar
  101. Kozyreva, O.V., Kleimenova, N.G.: 2007, Geomagnetic pulsations and magnetic disturbances during the initial phase of a strong magnetic storm of May 15, 2005. Geomagn. Aeron. 47, 470 – 480. doi:10.1134/S001679320704007X. ADSCrossRefGoogle Scholar
  102. Krall, J., Yurchyshyn, V.B., Slinker, S., Skoug, R.M., Chen, J.: 2006, Flux rope model of the 2003 October 28 – 30 coronal mass ejection and interplanetary coronal mass ejection. Astrophys. J. 642, 541 – 553. doi:10.1086/500822. ADSCrossRefGoogle Scholar
  103. Lang, K.R.: 2001, The Cambridge Encyclopedia of the Sun, Cambridge University Press, Cambridge. Google Scholar
  104. Lang, J., Thompson, W.T., Pike, C.D., Kent, B.J., Foley, C.R.: 2002, The radiometric calibration of the coronal diagnostic spectrometer. In: Pauluhn, A., Huber, M.C.E., von Steiger, R. (eds.) The Radiometric Calibration of SOHO (ESA SR-002) 2, 105. Google Scholar
  105. Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp. 257, 287 – 290. doi:10.1017/S1743921309029421.
  106. Larson, D.E., Lin, R.P., McTiernan, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., Rème, H., Sanderson, T.R., Kaiser, M., Lepping, R.P., Mazur, J.: 1997, Tracing the topology of the October 18 – 20, 1995, magnetic cloud with ∼0.1 – 102 keV electrons. Geophys. Res. Lett. 24, 1911 – 1914. doi:10.1029/97GL01878. ADSCrossRefGoogle Scholar
  107. Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957 – 11965. doi:10.1029/JA095iA08p11957. ADSCrossRefGoogle Scholar
  108. Lindsay, G.M., Luhmann, J.G., Russell, C.T., Gosling, J.T.: 1999, Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. 104, 12515 – 12524. doi:10.1029/1999JA900051. ADSCrossRefGoogle Scholar
  109. Linker, J.A., Mikić, Z., Bisecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during whole Sun month. J. Geophys. Res. 104(A5), 9809. ADSCrossRefGoogle Scholar
  110. Lippiello, E., de Arcangelis, L., Godano, C.: 2008, Different triggering mechanisms for solar flares and coronal mass ejections. Astron. Astrophys. 488, L29 – L32. doi:10.1051/0004-6361:200810164. ADSCrossRefGoogle Scholar
  111. Liu, C., Lee, J., Yurchyshyn, V., Deng, N., Cho, K., Karlický, M., Wang, H.: 2007, The eruption from a sigmoidal solar active region on 2005 May 13. Astrophys. J. 669, 1372 – 1381. doi:10.1086/521644. ADSCrossRefGoogle Scholar
  112. Lockwood, M., Moen, J.: 1999, Reconfiguration and closure of lobe flux by reconnection during northward IMF: possible evidence for signatures in cusp/cleft auroral emissions. Ann. Geophys. 17, 996 – 1011. doi:10.1007/s005850050827. ADSCrossRefGoogle Scholar
  113. Lugaz, N., Vourlidas, A., Roussev, I.I., Morgan, H.: 2009, Solar – terrestrial simulation in the STEREO era: the 24 – 25 January 2007 eruptions. Solar Phys. 256, 269 – 284. doi:10.1007/s11207-009-9339-4. ADSCrossRefGoogle Scholar
  114. Manoharan, P.K.: 1993, Study of solar wind using single-station interplanetary scintillation. Bul. Astron. Soc. India 21, 383 – 384. ADSGoogle Scholar
  115. Manoharan, P.K., Ananthakrishnan, S.: 1990, Determination of solar-wind velocities using single-station measurements of interplanetary scintillation. Mon. Not. Roy. Astron. Soc. 244, 691 – 695. ADSGoogle Scholar
  116. Manoharan, P.K., Kojima, M., Gopalswamy, N., Kondo, T., Smith, Z.: 2000, Radial evolution and turbulence characteristics of a coronal mass ejection. Astrophys. J. 530, 1061 – 1070. doi:10.1086/308378. ADSCrossRefGoogle Scholar
  117. Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335 – 338. doi:10.1016/0273-1177(86)90172-9. ADSCrossRefGoogle Scholar
  118. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998a, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563 – 612. doi:10.1023/A:1005040232597. ADSCrossRefGoogle Scholar
  119. McComas, D.J., Riley, P., Gosling, J.T., Balogh, A., Forsyth, R.: 1998b, Ulysses’ rapid crossing of the coronal hole boundary. J. Geophys. Res. 103(A2), 1955 – 1967. ADSCrossRefGoogle Scholar
  120. Mende, S.B., Heetderks, H., Frey, H.U., Lampton, M., Geller, S.P., Abiad, R., Siegmund, O.H.W., Tremsin, A.S., Spann, J., Dougani, H., Fuselier, S.A., Magoncelli, A.L., Bumala, M.B., Murphree, S., Trondsen, T.: 2000, Far ultraviolet imaging from the image spacecraft. 2. Wideband fuv imaging. Space Sci. Rev. 91(1–2), 271 – 285. ADSCrossRefGoogle Scholar
  121. Mendillo, M.: 2006, Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys. 44(RG4001). doi:10.1029/2005RG000193.
  122. Messmer, P., Benz, A.O., Monstein, C.: 1999, PHOENIX-2: a new broadband spectrometer for decimetric and microwave radio bursts first results. Solar Phys. 187, 335 – 345. doi:10.1023/A:1005194314845. ADSCrossRefGoogle Scholar
  123. Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6(5), 2217. ADSCrossRefGoogle Scholar
  124. Mikić, Z., Linker, J.A., Lionello, R., Riley, P., Titov, V.: 2009, Modeling the May 13, 2005 CME (oral presentation) SHINE Workshop, Wolfville, Nova Scotia, Canada. Google Scholar
  125. Milan, S.E., Wild, J.A., Grocott, A., Draper, N.C.: 2006, Space- and ground-based investigations of solar wind-magneto sphere – ionosphere coupling. Adv. Space Res. 38(8), 1671 – 1677. doi:10.1016/j.asr.2005.08.009. ADSCrossRefGoogle Scholar
  126. Milan, S.E., Hutchinson, J., Boakes, P.D., Hubert, B.: 2009, Influences on the radius of the auroral oval. Ann. Geophys. 27(7), 2913 – 2924. ADSCrossRefGoogle Scholar
  127. Moore, R.L., Labonte, B.J.: 1980, The filament eruption in the 3B flare of July 29, 1973 – onset and magnetic field configuration. In: Sheridan, K.V., Dulk, G.A. (eds.) Solar and Interplanetary Dynamics, IAU Symp. 91, 207 – 210. Google Scholar
  128. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833 – 848. doi:10.1086/320559. ADSCrossRefGoogle Scholar
  129. Moran, P.J., Breen, A.R., Varley, C.A., Williams, P.J.S., Wilkinson, W.P., Markkanen, J.: 1998, Measurements of the direction of the solar wind using interplanetary scintillation. Ann. Geophys. 16, 1259 – 1264. ADSCrossRefGoogle Scholar
  130. Morgan, H., Habbal, S.R.: 2007, The long-term stability of the visible F corona at heights of 3 – 6 R . Astron. Astrophys. 471, L47 – L50. doi:10.1051/0004-6361:20078071. ADSCrossRefGoogle Scholar
  131. Morgan, H., Habbal, S.R.: 2009, A method for separating CMEs from the quiescent corona. Astrophys. J., in press. Google Scholar
  132. Morgan, H., Habbal, S.R., Woo, R.: 2006, The depiction of coronal structure in white-light images. Solar Phys. 236, 263 – 272. doi:10.1007/s11207-006-0113-6. ADSCrossRefGoogle Scholar
  133. Morgan, H., Habbal, S.R., Lugaz, N.: 2009, Mapping the structure of the corona using Fourier backprojection tomography. Astrophys. J. 690, 1119 – 1129. doi:10.1088/0004-637X/690/2/1119. ADSCrossRefGoogle Scholar
  134. Mukai, T., Machida, S., Saito, Y., Hirahara, M., Terasawa, T., Kaya, N., Obara, T., Ejiri, M., Nishida, A.: 1994, The low-energy particle (lep) experiment onboard the geotail satellite. J. Geomagn. Geoelectr. 46(8), 669 – 692. Google Scholar
  135. Nishida, A.: 1994, The Geotail mission. Geophys. Res. Lett. 21(25), 2871 – 2873. ADSCrossRefGoogle Scholar
  136. Odstrcil, D., Pizzo, V.J.: 2002, Numerical simulation of interplanetary disturbances. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference 477, 281 – 284. Google Scholar
  137. Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 110(A9), 2106. doi:10.1029/2004JA010745. CrossRefGoogle Scholar
  138. Ogilvie, K.W., Desch, M.D.: 1997, The Wind spacecraft and its early scientific results. Adv. Space Res. 20, 559 – 568. ADSCrossRefGoogle Scholar
  139. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55 – 77. ADSCrossRefGoogle Scholar
  140. Owens, M., Cargill, P.: 2004, Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections. Ann. Geophys. 22, 4397 – 4406. ADSCrossRefGoogle Scholar
  141. Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U.: 2005, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. 110(A9), 1105. doi:10.1029/2004JA010814. CrossRefGoogle Scholar
  142. Pizzo, V.J., Hill, S.M., Balch, C.C., Biesecker, D.A., Bornmann, P., Hildner, E., Grubb, R.N., Chipman, E.G., Davis, J.M., Wallace, K.S., Russell, K., Cauffman, S.A., Saha, T.T., Berthiume, G.D.: 2005, The NOAA Goes-12 solar X-ray imager (SXI) 2. Performance. Solar Phys. 226, 283 – 315. doi:10.1007/s11207-005-7417-9. ADSCrossRefGoogle Scholar
  143. Reiff, P.H., Burch, J.L.: 1985, IMF b(y)-dependent plasma flow and Birkeland currents in the dayside magnetosphere. II – a global model for northward and southward IMF. J. Geophys. Res. 90, 1595 – 1609. doi:10.1029/JA090iA02p01595. ADSCrossRefGoogle Scholar
  144. Reiner, M.J., Kaiser, M.L., Fainberg, J., Stone, R.G.: 1998, A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks. J. Geophys. Res. 103, 29651 – 29664. doi:10.1029/98JA02614. ADSCrossRefGoogle Scholar
  145. Reme, H., Aoustin, C., Bosqued, M., Dandouras, I., Lavraud, B., Sauvaud, J.A., Barthe, A., Bouyssou, J., Camus, T., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J.L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcayde, D., Jacquey, C., Mazelle, C., d’Uston, C., Mobius, E., Kistler, L.M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C.W., Curtis, D.W., Ingraham, C., Lin, R.P., McFadden, J.P., Parks, G.K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M.B., Baldetti, P., Bruno, R., Chionchio, G., Lellis, A.D., Marcucci, M.F., Pallocchia, G., Korth, A., Daly, P.W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E.G., Fuselier, S., Ghielmetti, A.G., Lennartsson, W., Escoubet, C.P., Balsiger, H., Friedel, R., Cao, J.B., Kovrazhkin, R.A., Papamastorakis, I., Pellat, R., Scudder, J., Sonnerup, B.: 2001, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (cis) experiment. Ann. Geophys. 19(10–12, Sp. Iss. SI), 1303 – 1354. ADSCrossRefGoogle Scholar
  146. Rickett, B.: 1992, IPS observations of the solar wind velocity and microscale density irregularities in the inner solar wind. In: Solar Wind Seven Colloquium, 255 – 258. Google Scholar
  147. Riley, P., Bame, S.J., Barraclough, B.L., Feldman, W.C., Gosling, J.T., Hoogeveen, G.W., McComas, D.J., Phillips, J.L., Goldstein, B.E., Neugebauer, M.: 1997, ULYSSES solar wind plasma observations at high latitudes. Adv. Space Res. 20, 15. ADSCrossRefGoogle Scholar
  148. Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the corona and inner heliosphere. J. Geophys. Res. 106(A8), 15889. ADSCrossRefGoogle Scholar
  149. Riley, P., Linker, J.A., Mikić, Z., Lionello, R.: 2001, MHD modeling of the solar corona and inner heliosphere: comparison with observations. In: Song, P., Singer, H.J., Siscoe, G.L. (eds.) Space Weather, Geophys. Monogr. Ser. 125, AGU, Washington, 159. Google Scholar
  150. Rishbeth, H., Williams, P.J.S.: 1985, Ionospheric Radar: the system and its early results. Mon. Not. Roy. Astron. Soc. 26, 478 – 512. Google Scholar
  151. Rostoker, G., Samson, J.C., Creutzberg, F., Hughes, T.J., McDiarmid, D.R., McNamara, A.G., Jones, A.V., Wallis, D.D., Cogger, L.L.: 1995, Canopus – a ground-based instrument array for remote-sensing the high-lattitude ionosphere during the istp/ggs program. Space Sci. Rev. 71(1 – 4), 743 – 760. ADSCrossRefGoogle Scholar
  152. Russell, C.T., Mulligan, T.: 2002, The true dimensions of interplanetary coronal mass ejections. Adv. Space Res. 29, 301 – 306. doi:10.1016/S0273-1177(01)00588-9. ADSCrossRefGoogle Scholar
  153. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi:10.1007/BF00733429. ADSCrossRefGoogle Scholar
  154. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033 – 1059. ADSCrossRefGoogle Scholar
  155. Shishov, V.I., Shishova, T.D.: 1979, Influence of source sizes on the spectra of interplanetary scintillations – observations. Sov. Astron. 23, 345. ADSGoogle Scholar
  156. Shishov, V.I., Tyul’Bashev, S.A., Subaev, I.A., Chashei, I.V.: 2008, Monitoring of interplanetary and ionospheric scintillation of an ensemble of radio sources. Solar Syst. Res. 42, 341 – 350. doi:10.1134/S0038094608040072. ADSCrossRefGoogle Scholar
  157. Siscoe, G., Odstrcil, D.: 2008, Ways in which ICME sheaths differ from magnetosheaths. J. Geophys. Res. 113(A12), A00B07. doi:10.1029/2008JA013142. CrossRefGoogle Scholar
  158. Smith, C.W., L’Heureux, J., Ness, N.F., Acuna, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86(1 – 4), 613 – 632. ADSCrossRefGoogle Scholar
  159. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1 – 22. doi:10.1023/A:1005082526237. ADSCrossRefGoogle Scholar
  160. Summers, H.P.: 2004, The ADAS Manual, Version 2.6. World Wide Web. http://www.adas.ac.uk/manual.php, accessed November 2009.
  161. Swarup, G., Sarma, N.V.G., Joshi, M.N., Kapahi, V.K., Bagri, D.S., Damle, S.V., Ananthakrishnan, S., Balasubramanian, V., Bhave, Sinha, R.P.P.: 1971, Large steerable radio telescope at Ootacamund, India. Nature 230, 185. ADSCrossRefGoogle Scholar
  162. Thomasson, P.: 1986, MERLIN. Quart. J. Roy. Astron. Soc. 27, 413 – 431. ADSGoogle Scholar
  163. Troshichev, O.A., Andrezen, V.G., Vennerstrom, S., Friis-Christensen, E.: 1988, Magnetic activity in the polar cap – a new index. Planet. Space Sci. 36, 1095 – 1102. doi:10.1016/0032-0633(88)90063-3. ADSCrossRefGoogle Scholar
  164. Tsurutani, B.T., Gonzalez, W.D., Lakhina, G.S., Alex, S.: 2003, The extreme magnetic storm of 1 – 2 September 1859. J. Geophys. Res. 108, 1268. doi:10.1029/2002JA009504. CrossRefGoogle Scholar
  165. Tverskaya, L.V., Ginzburg, E.A., Ivanova, T.A., Pavlov, N.N., Svidsky, P.M.: 2007, Peculiarities of the outer radiation belt dynamics during the strong magnetic storm of May 15, 2005. Geomagn. Aeron. 47, 696 – 703. doi:10.1134/S0016793207060023. ADSCrossRefGoogle Scholar
  166. Wanliss, J.A., Showalter, K.M.: 2006, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 111(A2). doi:10.1029/2005JA011034.
  167. Wannberg, G., Wolf, I., Vanhainen, L.G., Koskenniemi, K., Röttger, J., Postila, M., Markkanen, J., Jacobsen, R., Stenberg, A., Larsen, R., Eliassen, S., Heck, S., Huuskonen, A.: 1997, The EISCAT Svalbard Radar, a case study in modern incoherent scatter radar system design. Radio Sci. 32, 2283 – 2307. ADSCrossRefGoogle Scholar
  168. Wannberg, G., Vanhainen, L.G., Westman, A., Breen, A.R., Williams, P.J.S.: 2002, The new 1420 MHz dual polarisation interplanetary scintillation (IPS) facility at EISCAT. In: Conference Proceedings, Union of Radio Scientists (URSI). Google Scholar
  169. Widing, K.G.: 1978, Forbidden lines of Fe xix, Fe xx, and Fe xxi in solar flares. Astrophys. J. 222, 735 – 739. doi:10.1086/156192. ADSCrossRefGoogle Scholar
  170. Wolfson, J., Bruner, M., Jurcevich, B., Lemen, J., Schrijver, K., Shine, R., Strong, K., Tarbell, T., Title, A., Golub, L., Bookbinder, J., Deluca, E., Acton, L., Handy, B., Kankelborg, C., Fisher, R.: 1997, The TRACE mission. Bull. Am. Astron. Soc. 29, 887. ADSGoogle Scholar
  171. Wood, A.G., Pryse, S.E., Middleton, H.R., Howells, V.S.C.: 2008, Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive. Ann. Geophys. 26, 2203 – 2216. ADSCrossRefGoogle Scholar
  172. Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. 109(A18), 3109. doi:10.1029/2003JA010226. CrossRefGoogle Scholar
  173. Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2009, Modeling and prediction of fast CME/shocks associated with type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp. 257, 489 – 491. doi:10.1017/S1743921309029755.
  174. Yee, J., Cameron, G.E., Kusnierkiewicz, D.Y.: 1999, Overview of TIMED. In: Larar, A.M. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 3756, 244 – 254. Google Scholar
  175. Yurchyshyn, V., Liu, C., Abramenko, V., Krall, J.: 2006, The May 13, 2005 eruption: observations, data analysis and interpretation. Solar Phys. 239, 317 – 335. doi:10.1007/s11207-006-0177-3. ADSCrossRefGoogle Scholar
  176. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S., Zhukov, A.N.: 2007a, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005. J. Geophys. Res. 112(A11), 10102. doi:10.1029/2007JA012321. CrossRefGoogle Scholar
  177. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S., Zhukov, A.N.: 2007b, Correction to “Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005”. J. Geophys. Res. 112(A11), 12103. doi:10.1029/2007JA012891. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • M. M. Bisi
    • 1
    • 2
  • A. R. Breen
    • 2
  • B. V. Jackson
    • 1
  • R. A. Fallows
    • 2
  • A. P. Walsh
    • 4
  • Z. Mikić
    • 5
  • P. Riley
    • 5
  • C. J. Owen
    • 4
  • A. Gonzalez-Esparza
    • 6
  • E. Aguilar-Rodriguez
    • 6
  • H. Morgan
    • 7
  • E. A. Jensen
    • 8
    • 9
  • A. G. Wood
    • 2
  • M. J. Owens
    • 2
    • 3
  • M. Tokumaru
    • 10
  • P. K. Manoharan
    • 11
  • I. V. Chashei
    • 12
  • A. S. Giunta
    • 13
    • 14
  • J. A. Linker
    • 5
  • V. I. Shishov
    • 12
  • S. A. Tyul’bashev
    • 12
  • G. Agalya
    • 11
  • S. K. Glubokova
    • 12
    • 15
  • M. S. Hamilton
    • 1
  • K. Fujiki
    • 10
  • P. P. Hick
    • 1
    • 16
  • J. M. Clover
    • 1
  • B. Pintér
    • 2
  1. 1.Center for Astrophysics and Space SciencesUniversity of California, San DiegoLa JollaUSA
  2. 2.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythWales, UK
  3. 3.Space Environment Physics Group, Department of MeteorologyUniversity of ReadingReadingEngland, UK
  4. 4.Mullard Space Science LaboratoryUniversity College LondonDorkingEngland, UK
  5. 5.Predictive Science, Inc.San DiegoUSA
  6. 6.MEXART, Instituto de Geofisica, Unidad MichoacánUniversidad Nacional Autonoma de MexicoMoreliaMexico
  7. 7.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  8. 8.ACS ConsultingHoustonUSA
  9. 9.MMT ObservatoryAmadoUSA
  10. 10.Solar-Terrestrial Environment Laboratory (STELab)Nagoya UniversityNagoyaJapan
  11. 11.Radio Astronomy Centre, National Centre for Radio AstrophysicsTata Institute of Fundamental ResearchUdhagamandalam (Ooty)India
  12. 12.Pushchino Radio Astronomy Observatory, Astrospace CenterLebedev Physical InstitutePushchinoRussia
  13. 13.Department of PhysicsUniversity of StrathclydeGlasgowScotland, UK
  14. 14.Space Science and Technology DepartmentRutherford Appleton LaboratoryDidcotEngland, UK
  15. 15.Pushchino State UniversityPushchinoRussia
  16. 16.San Diego Supercomputer CenterUniversity of California, San DiegoLa JollaUSA

Personalised recommendations