Solar Physics

, Volume 264, Issue 2, pp 403–431 | Cite as

Automated Detection of Oscillating Regions in the Solar Atmosphere

  • J. Ireland
  • M. S. Marsh
  • T. A. Kucera
  • C. A. Young


Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.


Sun: active region Sun: magnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880 – 894. doi: 10.1086/307502. CrossRefADSGoogle Scholar
  2. Aschwanden, M.J., de Pontieu, B., Schrijver, C.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE II. Measurements of geometric and physical parameters. Solar Phys. 206, 99 – 132. doi: 10.1023/A:1014916701283. CrossRefADSGoogle Scholar
  3. Aschwanden, M.J., Lee, J.K., Gary, G.A., Smith, M., Inhester, B.: 2008, Comparison of five numerical codes for automated tracing of coronal loops. Solar Phys. 248, 359 – 377. doi: 10.1007/s11207-007-9064-9. CrossRefADSGoogle Scholar
  4. Bayes, T.: 1763, An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. 53, 370 – 418. CrossRefGoogle Scholar
  5. Berger, T.E., de Pontieu, B., Fletcher, L., Schrijver, C.J., Tarbell, T.D., Title, A.M.: 1999, What is moss? Solar Phys. 190, 409 – 418. doi: 10.1023/A:1005286503963. CrossRefADSGoogle Scholar
  6. Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings – first results by EIT of SOHO JOP80. Solar Phys. 186, 207 – 229. CrossRefADSGoogle Scholar
  7. Bretthorst, G.L.: 1988, Lecture Notes in Statistics: Bayesian Spectrum Analysis and Parameter Estimation, Springer, Berlin. Google Scholar
  8. Chatfield, C.: 1996, The Analysis of Time Series: An Introduction, 5th edn. Chapman and Hall, London. zbMATHGoogle Scholar
  9. Cooley, J., Tukey, J.: 1965, An algorithm for the machine computation of complex Fourier series. Math. Comput. 19, 297 – 301. zbMATHMathSciNetGoogle Scholar
  10. De Moortel, I.: 2005, An overview of coronal seismology. Roy. Soc. London Philos. Trans., Ser. A 363, 2743 – 2760. CrossRefADSGoogle Scholar
  11. De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755 – 765. doi: 10.1051/0004-6361:20030984. CrossRefADSGoogle Scholar
  12. De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705 – 715. doi: 10.1051/0004-6361:20034233. CrossRefADSGoogle Scholar
  13. De Moortel, I., McAteer, R.T.J.: 2004, Waves and wavelets: An automated detection technique for solar oscillations. Solar Phys. 223, 1 – 11. doi: 10.1007/s11207-004-0806-7. CrossRefADSGoogle Scholar
  14. De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23 – L26. ADSGoogle Scholar
  15. De Moortel, I., Ireland, J., Hood, A.W., Walsh, R.W.: 2002, The detection of 3 and 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13 – L16. doi: 10.1051/0004-6361:20020436. CrossRefADSGoogle Scholar
  16. de Pontieu, B., Erdélyi, R., James, S.P.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536 – 539. doi: 10.1038/nature02749. CrossRefADSGoogle Scholar
  17. de Pontieu, B., Erdélyi, R., De Moortel, I.: 2005, How to channel photospheric oscillations into the corona. Astrophys. J. Lett. 624, L61 – L64. doi: 10.1086/430345. CrossRefADSGoogle Scholar
  18. de Pontieu, B., Berger, T.E., Schrijver, C.J., Title, A.M.: 1999, Dynamics of transition region ‘moss’ at high time resolution. Solar Phys. 190, 419 – 435. doi: 10.1023/A:1005220606223. CrossRefADSGoogle Scholar
  19. Deforest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217. doi: 10.1086/311460. CrossRefADSGoogle Scholar
  20. Fletcher, L., de Pontieu, B.: 1999, Plasma diagnostics of transition region “moss” using SOHO/CDS and TRACE. Astrophys. J. Lett. 520, L135 – L138. doi: 10.1086/312157. CrossRefADSGoogle Scholar
  21. Grechnev, V.V.: 2003, A method to analyze imaging radio data on solar flares. Solar Phys. 213, 103 – 110. CrossRefADSGoogle Scholar
  22. Gregory, P.C.: 2005, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, Cambridge University Press, Cambridge. zbMATHGoogle Scholar
  23. Ireland, J., De Moortel, I.: 2002, Application of wavelet analysis to transversal coronal loop oscillations. Astron. Astrophys. 391, 339 – 351. doi: 10.1051/0004-6361:20020643. CrossRefADSGoogle Scholar
  24. Ireland, J., Walsh, R.W., Harrison, R.A., Priest, E.R.: 1999, A wavelet analysis of active region oscillations. Astron. Astrophys. 347, 355 – 365. ADSGoogle Scholar
  25. Jaynes, E.T.: 1987, Bayesian spectrum and chirp analysis. In: Smith, C.R., Erickson, G.J. (eds.) Maximum Entropy and Bayesian Spectral Analysis and Estimation Problems, Reidel, Dordrecht, 1 – 37. Google Scholar
  26. Jaynes, E.T.: 2003, Probability Theory: The Logic Of Science, 1st edn. Cambridge University Press, Cambridge. zbMATHGoogle Scholar
  27. Katsiyannis, A.C., Williams, D.R., McAteer, R.T.J., Gallagher, P.T., Keenan, F.P., Murtagh, F.: 2003, Eclipse observations of high-frequency oscillations in active region coronal loops. Astron. Astrophys. 406, 709 – 714. doi: 10.1051/0004-6361:20030458. CrossRefADSGoogle Scholar
  28. King, D.B., Nakariakov, V.M., Deluca, E.E., Golub, L., McClements, K.G.: 2003, Propagating EUV disturbances in the Solar corona: Two-wavelength observations. Astron. Astrophys. 404, L1 – L4. doi: 10.1051/0004-6361:20030763. CrossRefADSGoogle Scholar
  29. Linnell-Nemec, A.F., Nemec, J.M.: 1985, A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 2317 – 2320. doi: 10.1086/113936. CrossRefADSGoogle Scholar
  30. Marsh, M.S., Ireland, J., Kucera, T.: 2008, Bayesian analysis of solar oscillations. Astrophys. J. 681, 672 – 679. doi: 10.1086/588751. CrossRefADSGoogle Scholar
  31. McAteer, R.T.J., Gallagher, P.T., Bloomfield, D.S., Williams, D.R., Mathioudakis, M., Keenan, F.P.: 2004, Ultraviolet oscillations in the chromosphere of the quiet Sun. Astrophys. J. 602, 436 – 445. doi: 10.1086/380835. CrossRefADSGoogle Scholar
  32. McIntosh, S.W., Fleck, B., Tarbell, T.D.: 2004, Chromospheric oscillations in an equatorial coronal hole. Astrophys. J. Lett. 609, L95 – L98. doi: 10.1086/422748. CrossRefADSGoogle Scholar
  33. McIntosh, S.W., de Pontieu, B., Tomczyk, S.: 2008, A coherence-based approach for tracking waves in the solar corona. Solar Phys. 252, 321 – 348. doi: 10.1007/s11207-008-9257-x. CrossRefADSGoogle Scholar
  34. Nakariakov, V.M., King, D.B.: 2007, Coronal periodmaps. Solar Phys. 241, 397 – 409. doi: 10.1007/s11207-007-0348-x. CrossRefADSGoogle Scholar
  35. Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Living Rev. Solar Phys. 2, 3. ADSGoogle Scholar
  36. Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: Implications for coronal heating. Science 285, 862 – 864. doi: 10.1126/science.285.5429.862. CrossRefADSGoogle Scholar
  37. Nakariakov, V.M., Arber, T.D., Ault, C.E., Katsiyannis, A.C., Williams, D.R., Keenan, F.P.: 2004, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. Roy. Astron. Soc. 349, 705 – 709. doi: 10.1111/j.1365-2966.2004.07537.x. CrossRefADSGoogle Scholar
  38. Nightingale, R.W., Aschwanden, M.J., Hurlburt, N.E.: 1999, Time variability of EUV brightenings in coronal loops observed with TRACE. Solar Phys. 190, 249 – 265. doi: 10.1023/A:1005211618498. CrossRefADSGoogle Scholar
  39. Ofman, L., Romoli, M., Poletto, G., Noci, G., Kohl, J.L.: 1997, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, L111. doi: 10.1086/311067. CrossRefADSGoogle Scholar
  40. O’Ruanaidh, J.K., Fitzgerald, W.J.: 1996, Numerical Bayesian Methods Applied to Signal Processing, Springer, New York. zbMATHGoogle Scholar
  41. O’Shea, E., Banerjee, D., Doyle, J.G., Fleck, B., Murtagh, F.: 2001, Active region oscillations. Astron. Astrophys. 368, 1095 – 1107. doi: 10.1051/0004-6361:20010073. CrossRefADSGoogle Scholar
  42. Robbrecht, E., Verwichte, E., Berghmans, D., Hochedez, J.F., Poedts, S., Nakariakov, V.M.: 2001, Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astron. Astrophys. 370, 591 – 601. doi: 10.1051/0004-6361:20010226. CrossRefADSGoogle Scholar
  43. Schuster, A.: 1898, On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. 3, 13 – 13. CrossRefGoogle Scholar
  44. Sych, R.A., Nakariakov, V.M.: 2008, The pixelised wavelet filtering method to study waves and oscillations in time sequences of solar atmospheric images. Solar Phys. 248, 395 – 408. doi: 10.1007/s11207-007-9005-7. CrossRefADSGoogle Scholar
  45. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 – 78. doi: 10.1175/1520-0477(1998)079. CrossRefADSGoogle Scholar
  46. Verwichte, E., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Characteristics of transverse oscillations in a coronal loop arcade. Solar Phys. 223, 77 – 94. doi: 10.1007/s11207-004-0807-6. CrossRefADSGoogle Scholar
  47. Williams, D.R., Phillips, K.J.H., Rudawy, P., Mathioudakis, M., Gallagher, P.T., O’Shea, E., Keenan, F.P., Read, P., Rompolt, B.: 2001, High-frequency oscillations in a solar active region coronal loop. Mon. Not. Roy. Astron. Soc. 326, 428 – 436. doi: 10.1046/j.1365-8711.2001.04491.x. CrossRefADSGoogle Scholar
  48. Williams, D.R., Mathioudakis, M., Gallagher, P.T., Phillips, K.J.H., McAteer, R.T.J., Keenan, F.P., Rudawy, P., Katsiyannis, A.C.: 2002, An observational study of a magneto-acoustic wave in the solar corona. Mon. Not. Roy. Astron. Soc. 336, 747 – 752. doi: 10.1046/j.1365-8711.2002.05764.x. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Ireland
    • 1
  • M. S. Marsh
    • 2
  • T. A. Kucera
    • 3
  • C. A. Young
    • 1
  1. 1.ADNET Systems, Inc.NASA’s Goddard Spaceflight CenterGreenbeltUSA
  2. 2.Jeremiah Horrocks InstituteUniversity of Central LancashirePrestonUK
  3. 3.NASA’s Goddard Spaceflight CenterGreenbeltUSA

Personalised recommendations