Solar Physics

, Volume 264, Issue 2, pp 329–344 | Cite as

Investigation of the Neupert Effect in the Various Intervals of Solar Flares

  • Zongjun Ning
  • Wenda Cao


The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) gives us a chance to investigate the theoretical Neupert effect using the correlation between the thermal-energy derivative and the nonthermal energy, or the thermal energy and the integral nonthermal energy. Based on this concept, we analyze four M-class RHESSI flares on 13 November 2003, 4 November 2004, 3 and 25 August 2005. According to the evolution of the temperature [T], emission measure [EM], and thermal energy [E th], each event is divided into three phases during the nonthermal-energy input [\(\frac {\mathrm{d}E_{\mathrm{nth}}}{\mathrm{d}t}\) in the units of erg s−1]. Phase 1 is identified as the interval before the temperature maximum, while after the thermal-energy maximum is phase 3, between them is phase 2. We find that these four flares show the Neupert effect in phase 1, but not in phase 3. The Neupert effect still works well in the second phase, although the cooling becomes slightly important. We define the parameter μ in the relation of \(\frac{\mathrm {d}E_{\mathrm{th}}}{\mathrm{d}t}=\mu\frac{\mathrm{d}E_{\mathrm {nth}}(t)}{\mathrm{d}t}\) or \(E_{\mathrm{th}}(t_{0})=\mu\int_{0}^{t_{0}}\frac{\mathrm{d}E_{\mathrm{nth}}(t)}{\mathrm{d}t}\,\mathrm{d}t\) when the cooling is ignored in phase 1. Considering the uncertainties in estimating the energy from the observations, it is not possible to precisely determine the fraction of the known energy in the nonthermal electrons transformed into the thermal energy of the hottest plasma observed by RHESSI. After a rough estimate of the flare volume and the assumption of the filling factor, we investigate the parameter μ in these four events. Its value ranges from 0.02 to 0.20, indicating that a small fraction (2% – 20%) of the nonthermal energy can be efficiently transformed into thermal energy, which is traced by the soft X-ray emission, and the bulk of the energy is lost possibly due to cooling.


Flares X-ray bursts Hard 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cargill, P.J.: 1994, Astrophys. J. 422, 381. CrossRefADSGoogle Scholar
  2. Dennis, B.R., Zarro, D.M.: 1993, Solar Phys. 146, 177. CrossRefADSGoogle Scholar
  3. Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, J. Geophys. Res. A 109, 10104. CrossRefADSGoogle Scholar
  4. Hudson, H.S.: 1991, Bull. Am. Astron. Soc. 23, 1064. ADSGoogle Scholar
  5. Kahler, S.W., Meekins, J.F., Kreplin, R.W., Bowyer, C.S.: 1970, Astrophys. J. 162, 293. CrossRefADSGoogle Scholar
  6. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, Solar Phys. 210, 3. CrossRefADSGoogle Scholar
  7. Liu, W., Liu, S., Jiang, Y.W., Petrosian, V.: 2006, Astrophys. J. 649, 1124. CrossRefADSGoogle Scholar
  8. Neupert, W.M.: 1968, Astrophys. J. Lett. 153, L59. CrossRefADSGoogle Scholar
  9. Ning, Z.: 2008a, Solar Phys. 248, 99. CrossRefADSGoogle Scholar
  10. Ning, Z.: 2008b, Astrophys. J. 686, 674. CrossRefADSGoogle Scholar
  11. Porter, L.J., Klimchuk, J.A.: 1995, Astrophys. J. 454, 499. CrossRefADSGoogle Scholar
  12. Saint-Hilaire, P., Benz, A.O.: 2005, Astron. Astrophys. 435, 743. CrossRefADSGoogle Scholar
  13. Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W., Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S., Shirey, K., Schwartz, R.: 2002, Solar Phys. 210, 33. CrossRefADSGoogle Scholar
  14. Sui, L., Holman, G.D., Dennis, B.R.: 2005, Astrophys. J. 626, 1102. CrossRefADSGoogle Scholar
  15. Tanaka, K., Zirin, H.: 1985, Astrophys. J. 299, 1036. CrossRefADSGoogle Scholar
  16. Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002, Astron. Astrophys. 392, 699. CrossRefADSGoogle Scholar
  17. Veronig, A.M., Brown, J.C., Dennis, B.R., Schwartz, R.A., Sui, L., Tolbert, A.K.: 2005, Astrophys. J. 621, 482. CrossRefADSGoogle Scholar
  18. White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Solar Phys. 227, 231. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryNanjingChina
  2. 2.Center for Solar Terrestrial ResearchNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations