Solar Physics

, Volume 266, Issue 1, pp 39–58 | Cite as

Multiwavelength Study of the M8.9/3B Solar Flare from AR NOAA 10960

  • Pankaj Kumar
  • A. K. Srivastava
  • B. Filippov
  • Wahab Uddin


We present a multiwavelength analysis of a long-duration, white-light solar flare (M8.9/3B) event that occurred on 04 June 2007 from AR NOAA 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE, and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the center of the active region, surrounded by opposite-polarity field regions. MDI images of the active region show a considerable amount of changes in the small positive-polarity sunspot of δ configuration during the flare event. SOT/G-band (4305 Å) images of the sunspot also suggest the rapid evolution of this positive-polarity sunspot with highly twisted penumbral filaments before the flare event, which were oriented in a counterclockwise direction. It shows the change in orientation, and also the remarkable disappearance of twisted penumbral filaments (≈35 – 40%) and enhancement in umbral area (≈45 – 50%) during the decay phase of the flare. TRACE and SECCHI observations reveal the successive activation of two helically-twisted structures associated with this sunspot, and the corresponding brightening in the chromosphere as observed by the time-sequence of SOT/Ca ii H line (3968 Å) images. The secondary, helically-twisted structure is found to be associated with the M8.9 flare event. The brightening starts six – seven minutes prior to the flare maximum with the appearance of a secondary, helically-twisted structure. The flare intensity maximizes as the secondary, helically-twisted structure moves away from the active region. This twisted flux tube, associated with the flare triggering, did not launch a CME. The location of the flare activity is found to coincide with the activation site of the helically-twisted structures. We conclude that the activation of successive helical twists (especially the second one) in the magnetic-flux tubes/ropes plays a crucial role in the energy build-up process and the triggering of the M-class solar flare without a coronal mass ejection (CME).


Flares Flux tubes Magnetic fields Corona 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11207_2010_9586_MOESM1_ESM.avi (1.5 mb)
(blue_cont.avi 1.51 MB)
11207_2010_9586_MOESM2_ESM.avi (822 kb)
(sot_ca2.avi 822 KB)
11207_2010_9586_MOESM3_ESM.avi (720 kb)
(stereo_a.avi 719 KB)
11207_2010_9586_MOESM4_ESM.avi (1.2 mb)
(trace.avi 1.16 MB)


  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131 – 149. doi: 10.1007/BF00145734. CrossRefADSGoogle Scholar
  2. Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 2000, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett. 529, L49 – L52. doi: 10.1086/312444. CrossRefADSGoogle Scholar
  3. Antiochos, S.K.: 1998, The magnetic topology of solar eruptions. Astrophys. J. Lett. 502, L181 – L184. doi: 10.1086/311507. CrossRefADSGoogle Scholar
  4. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi: 10.1029/1999GL900105. CrossRefADSGoogle Scholar
  5. Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105 – L108. doi: 10.1086/375834. CrossRefADSGoogle Scholar
  6. Filippov, B.P., Den, O.G.: 2001, A critical height of quiescent prominences before eruption. J. Geophys. Res. 106, 25177 – 25184. doi: 10.1029/2000JA004002. CrossRefADSGoogle Scholar
  7. Filippov, B., Koutchmy, S.: 2002, About the prominence heating mechanisms during its eruptive phase. Solar Phys. 208, 283 – 295. CrossRefADSGoogle Scholar
  8. Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377 – 389. doi: 10.1086/175797. CrossRefADSGoogle Scholar
  9. Gary, G.A., Moore, R.L.: 2004, Eruption of a multiple-turn helical magnetic flux tube in a large flare: evidence for external and internal reconnection that fits the breakout model of solar magnetic eruptions. Astrophys. J. 611, 545 – 556. doi: 10.1086/422132. CrossRefADSGoogle Scholar
  10. Gerrard, C.L., Arber, T.D., Hood, A.W.: 2002, The triggering of MHD instabilities through photospheric footpoint motions. Astron. Astrophys. 387, 687 – 699. doi: 10.1051/0004-6361:20020491. CrossRefADSGoogle Scholar
  11. Gissot, S.F., Hochedez, J., Chainais, P., Antoine, J.: 2008, 3D reconstruction from SECCHI-EUVI images using an optical-flow algorithm: method description and observation of an erupting filament. Solar Phys. 252, 397 – 408. doi: 10.1007/s11207-008-9270-0. CrossRefADSGoogle Scholar
  12. Ishii, T.T., Kurokawa, H., Takeuchi, T.T.: 1998, Emergence of a twisted magnetic flux bundle as a source of strong flare activity. Astrophys. J. 499, 898 – 904. doi: 10.1086/305669. CrossRefADSGoogle Scholar
  13. Ishii, T.T., Kurokawa, H., Takeuchi, T.T.: 2000, Emergence of twisted magnetic-flux bundles and flare activity in a large active region, NOAA 4201. Publ. Astron. Soc. Japan 52, 337 – 354. ADSGoogle Scholar
  14. Ji, H., Wang, H., Schmahl, E.J., Moon, Y., Jiang, Y.: 2003, Observations of the failed eruption of a filament. Astrophys. J. Lett. 595, L135 – L138. doi: 10.1086/378178. CrossRefADSGoogle Scholar
  15. Kliem, B., Titov, V.S., Török, T.: 2004, Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, L23 – L26. doi: 10.1051/0004-6361:20031690. MATHCrossRefADSGoogle Scholar
  16. Krall, J., Chen, J., Duffin, R.T., Howard, R.A., Thompson, B.J.: 2001, Erupting solar magnetic flux ropes: theory and observation. Astrophys. J. 562, 1045 – 1057. doi: 10.1086/323844. CrossRefADSGoogle Scholar
  17. Kumar, P., Manoharan, P.K., Uddin, W.: 2010, Evolution of solar magnetic field and associated multi-wavelength phenomena: flare events on 20 November 2003. Astrophys. J. 710, 1195 – 1204. doi: 10.1088/0004-637X/710/2/1195. CrossRefADSGoogle Scholar
  18. Liewer, P.C., de Jong, E.M., Hall, J.R., Howard, R.A., Thompson, W.T., Culhane, J.L., Bone, L., van Driel-Gesztelyi, L.: 2009, Stereoscopic analysis of the 19 May 2007 erupting filament. Solar Phys. 256, 57 – 72. doi: 10.1007/s11207-009-9363-4. CrossRefADSGoogle Scholar
  19. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375 – 2392. doi: 10.1029/1999JA900477. CrossRefADSGoogle Scholar
  20. Liu, R., Alexander, D.: 2009, Hard X-ray emission in kinking filaments. Astrophys. J. 697, 999 – 1009. doi: 10.1088/0004-637X/697/2/999. CrossRefADSGoogle Scholar
  21. Liu, Y., Jiang, Y., Ji, H., Zhang, H., Wang, H.: 2003, Observational evidence of a magnetic flux rope eruption associated with the X3 flare on 2002 July 15. Astrophys. J. Lett. 593, L137 – L140. doi: 10.1086/378284. CrossRefADSGoogle Scholar
  22. Liu, C., Deng, N., Liu, Y., Falconer, D., Goode, P.R., Denker, C., Wang, H.: 2005, Rapid change of δ spot structure associated with seven major flares. Astrophys. J. 622, 722 – 736. doi: 10.1086/427868. CrossRefADSGoogle Scholar
  23. Min, S., Chae, J.: 2009, The rotating sunspot in AR 10930. Solar Phys. 258, 203 – 217. doi: 10.1007/s11207-009-9425-7. CrossRefADSGoogle Scholar
  24. Nandy, D.: 2008, Magnetic helicity, coronal heating and solar flaring activity: a review of the role of active region twist. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity CS-383, Astron. Soc. Pac., San Francisco, 201 – 212. Google Scholar
  25. Rust, D.M., LaBonte, B.J.: 2005, Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys. J. Lett. 622, L69 – L72. doi: 10.1086/429379. CrossRefADSGoogle Scholar
  26. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. doi: 10.1007/BF00146478. CrossRefADSGoogle Scholar
  27. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. CrossRefADSGoogle Scholar
  28. Schmidt, H.U.: 1964, On the observable effects of magnetic energy storage and release connected with solar flares. In: Hess, W.N. (ed.) NASA Spec. Publ. 50, 107. Google Scholar
  29. Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Observation of kink instability during small B5.0 solar flare on 2007 June 4. Astrophys. J. 715, 292 – 299. doi: 10.1088/0004-637X/715/1/292. CrossRefADSGoogle Scholar
  30. Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100. doi: 10.1086/462412. CrossRefADSGoogle Scholar
  31. Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27 – L30. doi: 10.1051/0004-6361:20031691. MATHCrossRefADSGoogle Scholar
  32. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249, 167 – 196. doi: 10.1007/s11207-008-9174-z. CrossRefADSGoogle Scholar
  33. van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115 – 127. doi: 10.1007/BF00154935. CrossRefADSGoogle Scholar
  34. Wang, H., Ji, H., Schmahl, E.J., Qiu, J., Liu, C., Deng, N.: 2002, Sudden disappearance of a small sunspot associated with the 2002 February 20 M2.4 flare. Astrophys. J. Lett. 580, L177 – L180. doi: 10.1086/345713. CrossRefADSGoogle Scholar
  35. Wang, H., Liu, C., Qiu, J., Deng, N., Goode, P.R., Denker, C.: 2004, Rapid penumbral decay following three X-class solar flares. Astrophys. J. Lett. 601, L195 – L198. doi: 10.1086/382188. CrossRefADSGoogle Scholar
  36. Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163 – L166. doi: 10.1086/432910. CrossRefADSGoogle Scholar
  37. Wuelser, J., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) SPIE CS-5170, 111 – 122. doi: 10.1117/12.506877.
  38. Yashiro, S., Gopalswamy, N., Akiyama, S.: 2008, Poor CME productivity in active region 10960. AGU Spring Meeting Abstracts, A3. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Pankaj Kumar
    • 1
  • A. K. Srivastava
    • 1
  • B. Filippov
    • 2
  • Wahab Uddin
    • 1
  1. 1.Aryabhatta Research Institute of Observational Sciences (ARIES)NainitalIndia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of SciencesTroitskRussia

Personalised recommendations