Solar Physics

, Volume 265, Issue 1–2, pp 293–307 | Cite as

Remote Sensing of the Heliosphere with the Murchison Widefield Array

Remote Sensing of the Inner Heliosphere

Abstract

The Murchison Widefield Array (MWA) is one of the new technology low frequency radio interferometers currently under construction at an extremely radio-quiet location in Western Australia. The MWA design brings to bear the recent availability of powerful high-speed computational and digital signal processing capabilities on the problem of low frequency high-fidelity imaging with a rapid cadence and high spectral resolution. Solar and heliosphere science are among the key science objectives of the MWA and have guided the array design from its very conception. We present here a brief overview of the design and capabilities of the MWA with emphasis on its suitability for solar physics and remote-sensing of the heliosphere. We discuss the solar imaging and interplanetary scintillation (IPS) science capabilities of the MWA and also describe a new software framework. This software, referred to as Haystack InterPlanetary Software System (HIPSS), aims to provide a common data repository, interface, and analysis tools for IPS data from all observatories across the world.

Keywords

Instruments Interplanetary scintillation Techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai, K., Kojima, M., Tokumaru, M., Yokobe, A., Jackson, B.V., Hick, P.L., Manoharan, P.K.: 1998, Heliospheric tomography using interplanetary scintillation observations. III – Correlation between speed and electron density fluctuations in the solar wind. J. Geophys. Res. 103, 1991. doi:10.1029/97JA02750. CrossRefADSGoogle Scholar
  2. Bastian, T.S., Gary, D.E.: 1997, On the feasibility of imaging coronal mass ejections at radio wavelengths. J. Geophys. Res. 102, 14031 – 14040. doi:10.1029/97JA00483. CrossRefADSGoogle Scholar
  3. Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., Vourlidas, A.: 2001, The coronal mass ejection of 1998 April 20: Direct imaging at radio wavelengths. Astrophys. J. Lett. 558, 65 – 69. doi:10.1086/323421. CrossRefADSGoogle Scholar
  4. Bisi, M.M., Fallows, R.A., Breen, A.R., Rifai Habbal, S., Jones, R.A.: 2007, Large-scale structure of the fast solar wind. J. Geophys. Res. (Space Phys.) 112, 6101. doi:10.1029/2006JA012166. CrossRefGoogle Scholar
  5. Bisi, M.M., Jackson, B.V., Buffington, A., Clover, J.M., Hick, P.P., Tokumaru, M.: 2009, Low-resolution STELab IPS 3D reconstructions of the whole heliosphere interval and comparison with in-ecliptic solar wind measurements from STEREO and wind instrumentation. Solar Phys. 256, 201 – 217. doi:10.1007/s11207-009-9350-9. CrossRefADSGoogle Scholar
  6. Bisi, M.M., Fallows, R.A., Breen, A.R., O’Neill, I.J.: 2010, Interplanetary scintillation observations of stream interaction regions in the solar wind. Solar Phys. 261, 149 – 172. doi:10.1007/s11207-009-9471-1. CrossRefADSGoogle Scholar
  7. Breen, A.R., Riley, P., Lazarus, A.J., Canals, A., Fallows, R.A., Linker, J., Mikic, Z.: 2002, The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations. Ann. Geophys. 20, 1291 – 1309. CrossRefADSGoogle Scholar
  8. Cairns, I.H., Knock, S.A., Robinson, P.A., Kuncic, Z.: 2003, Type II solar radio bursts: theory and space weather implications. Space Sci. Rev. 107, 27 – 34. doi:10.1023/A:1025503201687. CrossRefADSGoogle Scholar
  9. Coles, W.A., Rickett, B.J., Rumsey, V.H., Kaufman, J.J., Turley, D.G., Ananthakrishnan, S., Armstrong, J.W., Harmons, J.K., Scott, S.L., Sime, D.G.: 1980, Solar cycle changes in the polar solar wind. Nature 286, 239 – 241. doi:10.1038/286239a0. CrossRefADSGoogle Scholar
  10. de Vos, M., Gunst, A.W., Nijboer, R.: 2009, The LOFAR telescope: system architecture and signal processing. IEEE Proc. 97, 1431 – 1437. doi:10.1109/JPROC.2009.2020509. CrossRefADSGoogle Scholar
  11. Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The solar mass ejection imager (Smei). Solar Phys. 217, 319 – 347. CrossRefADSGoogle Scholar
  12. Gopalswamy, N.: 2000, Type II solar radio bursts. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio Astronomy at Long Wavelengths, 123 – 136. Google Scholar
  13. Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Invited review. Solar Phys. 256, 219 – 237. doi:10.1007/s11207-009-9352-7. CrossRefADSGoogle Scholar
  14. Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214 – 1217. doi:10.1038/2031214a0. CrossRefADSGoogle Scholar
  15. Jackson, B.V., Hick, P.L., Kojima, M., Yokobe, A.: 1998, Heliospheric tomography using interplanetary scintillation observations 1. Combined Nagoya and Cambridge data. J. Geophys. Res. 103, 12049 – 12068. doi:10.1029/97JA02528. CrossRefADSGoogle Scholar
  16. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Kojima, M., Tokumaru, M.: 2007, Comparison of the extent and mass of CME events in the interplanetary medium using IPS and SMEI Thomson scattering observations. Astron. Astrophys. Trans. 26, 477 – 487. doi:10.1080/10556790701612221. CrossRefADSGoogle Scholar
  17. Jensen, E.A., Hick, P.P., Bisi, M.M., Jackson, B.V., Clover, J., Mulligan, T.: 2010, Faraday rotation response to coronal mass ejection structure. Solar Phys., this issue. doi: 10.1007/s11207-010-9543-2.
  18. Joshi, M.N., Swarup, G., Bagri, D.S., Kher, R.K.: 1988, A new electronically steerable 1056 dipole array at 327 MHz for the Ooty radio telescope. Bull. Astron. Soc. India 16, 111 – 121. ADSGoogle Scholar
  19. Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173 – 222. doi:10.1007/BF00212754. CrossRefADSGoogle Scholar
  20. Kojima, M., Tokumaru, M., Watanabe, H., Yokobe, A., Asai, K., Jackson, B.V., Hick, P.L.: 1998, Heliospheric tomography using interplanetary scintillation observations 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1 – 1 AU. J. Geophys. Res. 103, 1981 – 1990. doi:10.1029/97JA02162. CrossRefADSGoogle Scholar
  21. Kojima, M., Tokumaru, M., Fujiki, K., Ishida, Y., Ohmi, T., Hayashi, K., Yamashita, M.: 2003, Solar wind imaging facility (SWIFT) for space weather research. In: Keil, S.L., Avakyan, S.V. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE), Conference Series, 4853, 121 – 128. Google Scholar
  22. Liu, Y., Manchester, W.B. IV, Kasper, J.C., Richardson, J.D., Belcher, J.W.: 2007, Determining the magnetic field orientation of coronal mass ejections from faraday rotation. Astrophys. J. 665, 1439 – 1447. doi:10.1086/520038. CrossRefADSGoogle Scholar
  23. Lonsdale, C.J., Cappallo, R.J., Morales, M.F., Briggs, F.H., Benkevitch, L., Bowman, J.D., Bunton, J.D., Burns, S., Corey, B.E., Desouza, L., Doeleman, S.S., Derome, M., Deshpande, A., Gopala, M.R., Greenhill, L.J., Herne, D.E., Hewitt, J.N., Kamini, P.A., Kasper, J.C., Kincaid, B.B., Kocz, J., Kowald, E., Kratzenberg, E., Kumar, D., Lynch, M.J., Madhavi, S., Matejek, M., Mitchell, D.A., Morgan, E., Oberoi, D., Ord, S., Pathikulangara, J., Prabu, T., Rogers, A., Roshi, A., Salah, J.E., Sault, R.J., Shankar, N.U., Srivani, K.S., Stevens, J., Tingay, S., Vaccarella, A., Waterson, M., Wayth, R.B., Webster, R.L., Whitney, A.R., Williams, A., Williams, C.: 2009, The Murchison Widefield array: design overview. IEEE Proc. 97, 1497 – 1506. doi:10.1109/JPROC.2009.2017564. CrossRefADSGoogle Scholar
  24. Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305 – 317. doi:10.1007/s11207-008-9220-x. CrossRefADSGoogle Scholar
  25. Maia, D.J.F., Gama, R., Mercier, C., Pick, M., Kerdraon, A., Karlický, M.: 2007, The radio-coronal mass ejection event on 2001 April 15. Astrophys. J. 660, 874 – 881. doi:10.1086/508011. CrossRefADSGoogle Scholar
  26. Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345 – 368. doi:10.1007/s11207-006-0100-y. CrossRefADSGoogle Scholar
  27. Manoharan, P.K., Kojima, M., Gopalswamy, N., Kondo, T., Smith, Z.: 2000, Radial evolution and turbulence characteristics of a coronal mass ejection. Astrophys. J. 530, 1061 – 1070. doi:10.1086/308378. CrossRefADSGoogle Scholar
  28. Mejia-Ambriz, J., Villanueva-Hernandez, P., Gonzalez-Esparza, J.A., Aguilar-Rodriguez, E., Jeyakumar, S.: 2010, IPS observations at the Mexican array radio telescope (MEXART). Solar Phys., this issue. doi: 10.1007/s11207-010-9562-z.
  29. Mitchell, D.A., Greenhill, L.J., Wayth, R.B., Sault, R.J., Lonsdale, C.J., Cappallo, R.J., Morales, M.F., Ord, S.M.: 2008, Real-time calibration of the Murchison Widefield array. IEEE J. Sel. Topics Signal Process. 2(5), 707 – 717. doi:10.1109/JSTSP.2008.2005327. CrossRefGoogle Scholar
  30. Moran, P.J., Ananthakrishnan, S., Balasubramanian, V., Breen, A.R., Canals, A., Fallows, R.A., Janardhan, P., Tokumaru, M., Williams, P.J.S.: 2000, Observations of interplanetary scintillation during the 1998 Whole Sun Month: a comparison between EISCAT, ORT and Nagoya data. Ann. Geophys. 18, 1003 – 1008. doi:10.1007/s005850000281. CrossRefADSGoogle Scholar
  31. Oberoi, D.: 2000, Tomography of the solar wind using interplanetary scintillations. PhD thesis, Indian Institue of Science. Google Scholar
  32. Schmidt, J.M., Gopalswamy, N.: 2008, Synthetic radio maps of CME-driven shocks below 4 solar radii heliocentric distance. J. Geophys. Res. (Space Phys.) 113, 8104. doi:10.1029/2007JA013002. CrossRefGoogle Scholar
  33. Scott, S.L., Rickett, B.J., Armstrong, J.W.: 1983, The velocity and the density spectrum of the solar wind from simultaneous three-frequency IPS observations. Astron. Astrophys. 123, 191 – 206. ADSGoogle Scholar
  34. Sheridan, K.V., Jackson, B.V., McLear, D.J., Dulk, G.A.: 1978, Radio observations of a massive, slow moving ejection of coronal material. Proc. Astron. Soc. Austr. 3, 249 – 250. ADSGoogle Scholar
  35. Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. (Space Phys.) 115, 4102. doi:10.1029/2009JA014628. CrossRefGoogle Scholar
  36. White, S.M., Mercier, C., Bradley, R., Bastian, T., Kerdraon, A., Pick, M.: 2006, Imaging observations of a very high frequency type II burst. In: AGU Spring Meeting Abstracts, A5. Google Scholar
  37. Wild, J.P.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. III. Isolated bursts. Austr. J. Sci. Res. A, Phys. Sci. 3, 541 – 557. ADSGoogle Scholar
  38. Zhang, X.: 2007, A study on the technique of observing interplanetary scintillation with simultaneous dual-frequency measurements. Chin. J. Astron. Astrophys. 7, 712 – 720. doi:10.1088/1009-9271/7/5/12. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Haystack ObservatoryMassachusetts Institute of TechnologyWestfordUSA

Personalised recommendations