Advertisement

Solar Physics

, Volume 264, Issue 1, pp 119–147 | Cite as

Revealing the Fine Structure of Coronal Dimmings and Associated Flows with Hinode/EIS

Implications for Understanding the Source Regions of Sustained Outflow Following CMEs
  • G. D. R. AttrillEmail author
  • L. K. Harra
  • L. van Driel-Gesztelyi
  • M. J. Wills-Davey
Article

Abstract

We study two CME events on 13 and 14 December 2006 that were associated with large-scale dimmings. We study the eruptions from pre-event on 11 December through the recovery on 15 December, using a combination of Hinode/EIS, SOHO/EIT, SOHO/MDI, and MLSO Hα data. The GOES X-class flares obscured the core dimmings, but secondary dimmings developed remote from the active region (AR) in both events. The secondary dimmings are found to be formed by a removal of bright coronal material from loops in the plage region to the East of the AR. Using Hinode/EIS data, we find that the outflows associated with the coronal-dimming regions are highly structured. The concentrated outflows are located at the footpoints of coronal loops (which exist before, and are re-established after, the eruptions), and these are correlated with regions of positive magnetic elements. Comparative study of the Hinode/EIS and SOHO/EIT data shows that the reduction in outflow velocity is consistent with the recovery in intensity of the studied regions. We find that concentrated downflows develop during the recovery phase of the dimmings and are also correlated with the same positive magnetic elements that were previously related to outflows.

The local behaviour of the flows in and around the dimming regions following the eruptions is found to be dynamic and complex. Despite the global aspects of these events (widespread dimmings, CMEs, coronal waves) being largely homologous, there are significant local variations and distinct differences between the flows associated with the two events. We find that the secondary dimmings recover primarily by re-establishment of the bright coronal loops (the exact configuration changes between the eruptions, which is reflected by the complexity of the flows).

Keywords

Coronal Mass Ejection Solar Phys Coronal Hole Coronal Loop Coronal Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Hα movie: halpha_mlso_141206.mov (MOV 38.9 MB)

References

  1. Asai, A., Hara, H., Watanabe, T., Imada, S., Sakao, T., Narukage, N., Culhane, J.L., Doschek, G.A.: 2008, Strongly blueshifted phenomena observed with Hinode EIS in the 2006 December 13 Solar flare. Astrophys. J. 685, 622 – 628. doi: 10.1086/590419. CrossRefADSGoogle Scholar
  2. Attrill, G.D.R.: 2008, Low coronal signatures of coronal mass ejections. PhD thesis, University College London. Google Scholar
  3. Attrill, G.D.R.: 2010, Dispelling illusions of reflection: a new interpretation of the 19 May 2007 event. Astrophys. J., submitted. Google Scholar
  4. Attrill, G.D.R., Wills-Davey, M.J.: 2010, Automatic detection and extraction of coronal dimmings from SDO/AIA data. Solar Phys. 262, 461 – 480. doi: 10.1007/s11207-009-9444-4. CrossRefADSGoogle Scholar
  5. Attrill, G., Nakwacki, M.S., Harra, L.K., van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J.: 2006, Using the evolution of coronal dimming regions to probe the global magnetic field topology. Solar Phys. 238, 117 – 139. doi: 10.1007/s11207-006-0167-5. CrossRefADSGoogle Scholar
  6. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, L101 – L104. doi: 10.1086/512854. CrossRefADSGoogle Scholar
  7. Attrill, G.D.R., van Driel-Gesztelyi, L., Démoulin, P., Zhukov, A.N., Steed, K., Harra, L.K., Mandrini, C.H., Linker, J.: 2008, The recovery of CME-related dimmings and the ICME’s enduring magnetic connection to the Sun. Solar Phys. 252, 349 – 372. doi: 10.1007/s11207-008-9255-z. CrossRefADSGoogle Scholar
  8. Attrill, G.D.R., Engell, A.J., Wills-Davey, M.J., Grigis, P., Testa, P.: 2009, Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys. J. 704, 1296 – 1308. doi: 10.1088/0004-637X/704/2/1296. CrossRefADSGoogle Scholar
  9. Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926 – 935. doi: 10.1088/0004-637X/705/1/926. CrossRefADSGoogle Scholar
  10. Berger, T.E., de Pontieu, B., Fletcher, L., Schrijver, C.J., Tarbell, T.D., Title, A.M.: 1999, What is moss? Solar Phys. 190, 409 – 418. doi: 10.1023/A:1005286503963. CrossRefADSGoogle Scholar
  11. Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478, 897 – 906. doi: 10.1051/0004-6361:20078615. CrossRefADSGoogle Scholar
  12. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT waves”. Astrophys. J. 569, 1009 – 1015. doi: 10.1086/339402. CrossRefADSGoogle Scholar
  13. Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112 – L115. doi: 10.1088/0004-637X/698/2/L112. CrossRefADSGoogle Scholar
  14. Chertok, I.M.: 2006, Large-scale activity in major solar eruptive events of November 2004 according to SOHO data. Astron. Rep. 50, 68 – 78. doi: 10.1134/S1063772906010082. CrossRefADSGoogle Scholar
  15. Chertok, I.M., Grechnev, V.V.: 2003, Large-scale dimmings produced by solar coronal mass ejections according to SOHO/EIT data in four EUV lines. Astron. Rep. 47, 934 – 945. doi: 10.1134/1.1626196. CrossRefADSGoogle Scholar
  16. Chertok, I.M., Grechnev, V.V.: 2005, Large-scale activity in the Bastille day 2000 solar event. Solar Phys. 229, 95 – 114. doi: 10.1007/s11207-005-3654-1. CrossRefADSGoogle Scholar
  17. Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604 – 611. doi: 10.1086/432250. CrossRefADSGoogle Scholar
  18. Cohen, O., Attrill, G.D.R., Manchester, W.B., Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705, 587 – 602. doi: 10.1088/0004-637X/705/1/587. CrossRefADSGoogle Scholar
  19. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19 – 61. doi: 10.1007/s01007-007-0293-1. CrossRefADSGoogle Scholar
  20. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi: 10.1007/BF00733432. CrossRefADSGoogle Scholar
  21. Delannée, C., Hochedez, J.F., Aulanier, G.: 2007, Stationary parts of an EIT and moreton wave: a topological model. Astron. Astrophys. 465, 603 – 612. doi: 10.1051/0004-6361:20065845. CrossRefADSGoogle Scholar
  22. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1 – 37. doi: 10.1007/BF00733425. CrossRefADSGoogle Scholar
  23. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362 – 1371. doi: 10.1086/591724. CrossRefADSGoogle Scholar
  24. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497 – 500. CrossRefADSGoogle Scholar
  25. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-ray telescope (XRT) for the Hinode mission. Solar Phys. 243, 63 – 86. doi: 10.1007/s11207-007-0182-1. CrossRefADSGoogle Scholar
  26. Harra, L.K., Sterling, A.C.: 2001, Material outflows from coronal intensity “Dimming Regions” during coronal mass ejection onset. Astrophys. J. Lett. 561, L215 – L218. doi: 10.1086/324767. CrossRefADSGoogle Scholar
  27. Harra, L.K., Hara, H., Imada, S., Young, P., Williams, D.R., Sterling, A.C., Korendyke, C., Attrill, G.D.R.: 2007, Coronal dimmings observed with Hinode: outflows related to a coronal mass ejection. Publ. Astron. Soc. Japan 59, S801 – S806. ADSGoogle Scholar
  28. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147 – L150. doi: 10.1086/587485. CrossRefADSGoogle Scholar
  29. Harra, L.K., Williams, D.R., Wallace, A.J., Magara, T., Hara, H., Tsuneta, S., Sterling, A.C., Doschek, G.A.: 2009, Coronal nonthermal velocity following helicity injection before an X-class flare. Astrophys. J. Lett. 691, L99 – L102. doi: 10.1088/0004-637X/691/2/L99. CrossRefADSGoogle Scholar
  30. Harrison, R.A., Lyons, M.: 2000, A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astron. Astrophys. 358, 1097 – 1108. ADSGoogle Scholar
  31. Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106, 25199 – 25214. doi: 10.1029/2000JA004026. ADSGoogle Scholar
  32. Hudson, H.S., Webb, D.F.: 1997, Soft X-ray signatures of coronal ejections. AGU Monograph. Google Scholar
  33. Hudson, H.S., Acton, L.W., Freeland, S.L.: 1996, A long-duration solar flare with mass ejection and global consequences. Astrophys. J. 470, 629 – 635. doi: 10.1086/177894. CrossRefADSGoogle Scholar
  34. Imada, S., Hara, H., Watanabe, T., Asai, A., Kamio, S., Matsuzaki, K., Harra, L.K., Mariska, J.T.: 2007, Discovery of the temperature-dependent upflow in the plage region during the gradual phase of the X-class flare. Publ. Astron. Soc. Japan 59, S793 – S799. Google Scholar
  35. Jin, M., Ding, M.D., Chen, P.F., Fang, C., Imada, S.: 2009, Coronal mass ejection induced outflows observed with Hinode/EIS. Astrophys. J. 702, 27 – 38. doi: 10.1088/0004-637X/702/1/27. CrossRefADSGoogle Scholar
  36. Kahler, S.W., Hudson, H.S.: 2001, Origin and development of transient coronal holes. J. Geophys. Res. 106, 29239 – 29248. doi: 10.1029/2001JA000127. CrossRefADSGoogle Scholar
  37. Ko, Y., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275 – 1287. doi: 10.1086/505021. CrossRefADSGoogle Scholar
  38. Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104, 16993 – 17004. doi: 10.1029/1999JA900177. CrossRefADSGoogle Scholar
  39. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3 – 17. doi: 10.1007/s11207-007-9014-6. CrossRefADSGoogle Scholar
  40. Kubo, M., Yokoyama, T., Katsukawa, Y., Lites, B., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Nagata, S., Tarbell, T.D., Shine, R.A., Title, A.M., Elmore, D.: 2007, Hinode observations of a vector magnetic field change associated with a flare on 2006 December 13. Publ. Astron. Soc. Japan 59, S779 – S784. Google Scholar
  41. Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, 2nd edn., Elsevier, New York. Google Scholar
  42. Ma, S., Attrill, G.R.R., Golub, L., Lin, J.: 2010, Statistical study of CMEs with and without distinct low coronal signatures. Astrophys. J., submitted. Google Scholar
  43. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725 – 740. doi: 10.1051/0004-6361:20041079. CrossRefADSGoogle Scholar
  44. Mandrini, C.H., Nakwacki, M.S., Attrill, G., van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., Elliott, H.: 2007, Are CME-related dimmings always a simple signature of interplanetary magnetic cloud footpoints? Solar Phys. 244, 25 – 43. doi: 10.1007/s11207-007-9020-8. CrossRefADSGoogle Scholar
  45. McIntosh, S.W.: 2009, The inconvenient truth about coronal dimmings. Astrophys. J. 693, 1306 – 1309. doi: 10.1088/0004-637X/693/2/1306. CrossRefADSGoogle Scholar
  46. McIntosh, S.W., Leamon, R.J., Davey, A.R., Wills-Davey, M.J.: 2007, The posteruptive evolution of a coronal dimming. Astrophys. J. 660, 1653 – 1659. doi: 10.1086/512665. CrossRefADSGoogle Scholar
  47. Noci, G.: 1973, Energy budget in coronal holes. Solar Phys. 28, 403 – 407. doi: 10.1007/BF00152311. CrossRefADSGoogle Scholar
  48. Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 110, A02106. doi: 10.1029/2004JA010745. CrossRefGoogle Scholar
  49. Podladchikova, O., Berghmans, D.: 2005, Automated detection of EIT waves and dimmings. Solar Phys. 228, 265 – 284. doi: 10.1007/s11207-005-5373-z. CrossRefADSGoogle Scholar
  50. Reinard, A.A., Biesecker, D.A.: 2008, Coronal mass ejection-associated coronal dimmings. Astrophys. J. 674, 576 – 585. doi: 10.1086/525269. CrossRefADSGoogle Scholar
  51. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283 – 291. doi: 10.1088/0004-637X/701/1/283. CrossRefADSGoogle Scholar
  52. Rust, D.M.: 1983, Coronal disturbances and their terrestrial effects, tutorial lecture. Space Sci. Rev. 34, 21 – 36. CrossRefADSGoogle Scholar
  53. Rust, D.M., Hildner, E.: 1976, Expansion of an X-ray coronal arch into the outer corona. Solar Phys. 48, 381 – 387. CrossRefADSGoogle Scholar
  54. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous Plasma Outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585 – 1588. doi: 10.1126/science.1147292. CrossRefADSGoogle Scholar
  55. Schrijver, C.J., De Rosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637 – 1644. doi: 10.1086/527413. CrossRefADSGoogle Scholar
  56. Sterling, A.C., Hudson, H.S.: 1997, YOHKOH SXT observations of X-ray “Dimming” associated with a Halo coronal mass ejection. Astrophys. J. Lett. 491, L55 – L58. doi: 10.1086/311043. CrossRefADSGoogle Scholar
  57. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465 – 2468. doi: 10.1029/98GL50429. CrossRefADSGoogle Scholar
  58. Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.P.: 2000, Coronal dimmings and energetic CMEs in April – May 1998. Geophys. Res. Lett. 27, 1431 – 1434. doi: 10.1029/1999GL003668. CrossRefADSGoogle Scholar
  59. Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., Owens, J.: 1991, The soft X-ray telescope for the SOLAR-A mission. Solar Phys. 136, 37 – 67. CrossRefADSGoogle Scholar
  60. van Driel-Gesztelyi, L., Attrill, G.D.R., Démoulin, P., Mandrini, C.H., Harra, L.K.: 2008, Why are CMEs large-scale coronal events: nature or nurture? Ann. Geophys. 26, 3077 – 3088. ADSCrossRefGoogle Scholar
  61. Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113 – L116. doi: 10.1086/590493. CrossRefADSGoogle Scholar
  62. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215 – 235. doi: 10.1007/s11207-008-9241-5. CrossRefADSGoogle Scholar
  63. Wang, T., Yan, Y., Wang, J., Kurokawa, H., Shibata, K.: 2002, The large-scale coronal field structure and source region features for a Halo coronal mass ejection. Astrophys. J. 572, 580 – 597. doi: 10.1086/340189. CrossRefADSGoogle Scholar
  64. Warmuth, A.: 2007, Large-scale waves and shocks in the solar corona. In: Klein, K.L., MacKinnon, A.L. (eds.) Lecture Notes in Physics, 725, Springer, Berlin, 107 – 138. Google Scholar
  65. Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251 – 27260. doi: 10.1029/2000JA000021. CrossRefADSGoogle Scholar
  66. Williams, D.R., Harra, L.K., Brooks, D.H., Imada, S., Hansteen, V.H.: 2009, Evidence from the extreme-ultraviolet imaging spectrometer for axial filament rotation before a large flare. Publ. Astron. Soc. Japan 61, 493 – 497. ADSGoogle Scholar
  67. Wills-Davey, M.J., Attrill, G.D.R.: 2010, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev., 325 – 353. doi: 10.1007/s11214-009-9612-8.
  68. Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the extreme ultraviolet imaging telescope. J. Geophys. Res. 106, 25089 – 25102. doi: 10.1029/2000JA000447. CrossRefADSGoogle Scholar
  69. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. doi: 10.1029/2003JA010282. CrossRefGoogle Scholar
  70. Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716. doi: 10.1051/0004-6361:20040351. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. D. R. Attrill
    • 1
    Email author
  • L. K. Harra
    • 2
  • L. van Driel-Gesztelyi
    • 2
    • 3
    • 4
  • M. J. Wills-Davey
    • 1
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.UCL-Mullard Space Science LaboratoryDorkingUK
  3. 3.Observatoire de Paris, LESIA, UMR 8109CNRSMeudon Principal CedexFrance
  4. 4.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations