Advertisement

Solar Physics

, Volume 262, Issue 2, pp 449–460 | Cite as

Automatic Detection of Limb Prominences in 304 Å EUV Images

  • N. LabrosseEmail author
  • S. Dalla
  • S. Marshall
Solar Image Processing and Analysis

Abstract

A new algorithm for automatic detection of prominences on the solar limb in 304 Å EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as the starting point to reconstruct the whole prominence by morphological image-processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community.

Keywords

Corona, structures Prominences, quiescent Prominences, active 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudarham, J., Scholl, I.F., Fuller, N., Fouesneau, M., Gonon, F., Maire, A., Leroy, Y.: 2008, Automated detection and tracking of filaments for a solar feature database. Astrophys. J. 26, 248. Google Scholar
  2. Aizerman, M., Braverman, E., Rozonoer, L.: 1964, Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25, 837. MathSciNetGoogle Scholar
  3. Anzer, U., Heinzel, P.: 2005, On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J. 622, 721. doi: 10.1086/427817. CrossRefGoogle Scholar
  4. Aschwanden, M.J., Wuelser, J.P., Nitta, N.V., Lemen, J.R.: 2009, Solar flare and CME observations with STEREO/EUVI. Solar Phys. 256, 40. doi: 10.1007/s11207-009-9347-4. CrossRefGoogle Scholar
  5. Auchère, F., Artzner, G.E.: 2004, EIT observations of the 15 November 1999 Mercury transit. Solar Phys. 219, 230. doi: 10.1023/B:SOLA.0000022945.53373.17. CrossRefGoogle Scholar
  6. Bernasconi, P.N., Rust, D.M., Hakim, D.: 2005, Advanced automated solar filament detection and characterization code: Description, performance, and results. Solar Phys. 228, 117. doi: 10.1007/s11207-005-2766-y. CrossRefADSGoogle Scholar
  7. Chang, C.C., Lin, C.J.: 2001, LIBSVM: A Library for Support Vector Machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  8. Cortes, C., Vapnik, V.: 1995, Support-vector networks. Mach. Learn. 20(3), 297. doi: 10.1023/A:1022627411411. Google Scholar
  9. Cristianini, N., Shawe-Taylor, J.: 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, New York. ISBN 0-521-78019-5. Google Scholar
  10. Foullon, C., Verwichte, E.: 2006, Automated detection of EUV prominences. Solar Phys. 234, 150. doi: 10.1007/s11207-006-0054-0. CrossRefGoogle Scholar
  11. Fu, G., Shih, F.Y., Wang, H.: 2007, Automated detection of prominence eruption using consecutive solar images. IEEE Trans. Circuits Syst. Video Technol. 17, 85. CrossRefGoogle Scholar
  12. Fuller, N., Aboudarham, J., Bentley, R.D.: 2005, Filament recognition and image cleaning on Meudon Hα spectroheliograms. Solar Phys. 227, 73. doi: 10.1007/s11207-005-8364-1. CrossRefGoogle Scholar
  13. Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 515. CrossRefADSGoogle Scholar
  14. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 313. doi: 10.1007/s11038-008-9282-7. Google Scholar
  15. Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E.E., Golub, L., Watanabe, T., Berger, T.: 2008, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1396. doi: 10.1086/591018. CrossRefGoogle Scholar
  16. Mackay, D.H., Gaizauskas, V., Yeates, A.R.: 2008, Where do solar filaments form? Consequences for theoretical models. Solar Phys. 248, 65. doi: 10.1007/s11207-008-9127-6. CrossRefGoogle Scholar
  17. Patsourakos, S., Vial, J.C.: 2002, Soho contribution to prominence science. Solar Phys. 208, 281. CrossRefGoogle Scholar
  18. Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1234. doi: 10.1088/0004-637X/691/2/1222. CrossRefGoogle Scholar
  19. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 439. doi: 10.1007/s11207-007-9075-6. CrossRefGoogle Scholar
  20. Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., Shibasaki, K.: 2006, One solar-cycle observations of prominence activities using the Nobeyama radioheliograph 1992 – 2004. Publ. Astron. Soc. Japan 58, 92. ADSGoogle Scholar
  21. Zharkova, V.V., Aboudarham, J., Zharkov, S., Ipson, S.S., Benkhalil, A.K., Fuller, N.: 2005, Solar feature catalogues in Egso. Solar Phys. 228, 375. doi: 10.1007/s11207-005-5623-0. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  2. 2.Jeremiah Horrocks Institute for Astrophysics and SupercomputingUniversity of Central LancashirePrestonUK
  3. 3.Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations