Solar Physics

, Volume 260, Issue 2, pp 407–421 | Cite as

Major Solar Energetic Particle Events of Solar Cycles 22 and 23: Intensities Close to the Streaming Limit

  • D. LarioEmail author
  • A. Aran
  • R. B. Decker


It has been argued that the highest intensities measured near 1 AU during large solar energetic particle events occur in association with the passage of interplanetary shocks driven by coronal mass ejections, whereas the intensities measured early in the events (known as the prompt component) are bounded by a maximum intensity plateau known as the streaming limit. A few events in Solar Cycle 23 showed prompt components with intensities above the previously determined streaming limit. One of the scenarios proposed to explain intensities that exceed this limit in these events invokes the existence of transient plasma structures beyond 1 AU able to confine and/or mirror energetic particles. We study whether other particle events with prompt-component intensities close to the previously determined streaming limit are similarly affected by the presence of interplanetary structures. Whereas such structures were observed in four out of the nine events studied here, we conclude that only the events on 22 October 1989, 29 October 2003, and 17 January 2005 show interplanetary structures that can have modified the transport conditions in a way similar to those events with prompt components exceeding the previously determined streaming limit. The other six events with prompt components close to the previously determined streaming limit were characterized by either a low level of pre-event solar activity and/or the absence of transient interplanetary structures able to modify the transport of energetic particles.


Solar energetic particle events Coronal mass ejections Interplanetary shocks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, P., Valdés-Galicia, J.F.: 1998, Solar Phys. 183, 407. CrossRefADSGoogle Scholar
  2. Bieber, J.W., Droege, W., Evenson, P.A., Pyle, R., Ruffolo, D., Pinsook, U., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Krucker, S.: 2002, Astrophys. J. 567, 622. CrossRefADSGoogle Scholar
  3. Bieber, J.W., Evenson, P.A., Droege, W., Pyle, R., Ruffolo, D., Rujiwarodom, M., Tooprakai, P., Khumlumlert, T.: 2004, Astrophys. J. 601, L103. CrossRefADSGoogle Scholar
  4. Bombardieri, D.J., Michael, K.J., Duldig, M.L., Humble, J.E.: 2007, Astrophys. J. 665, 813. CrossRefADSGoogle Scholar
  5. Cane, H.V., Richardson, I.G.: 1995, J. Geophys. Res. 100, 1755. CrossRefADSGoogle Scholar
  6. Lario, D., Decker, R.B.: 2002, Geophys. Res. Lett. 29, 1393. doi: 10.1029/2001GL014017. CrossRefADSGoogle Scholar
  7. Lario, D., Aran, A., Decker, R.B.: 2008, Space Weather 6, S12001. doi: 10.1029/2008SW000403. CrossRefADSGoogle Scholar
  8. Lario, D., Decker, R.B., Aran, A.: 2008. In: Li, G., Hu, Q., Verkhoglyadova, O., Zank, G.P., Lin, R.P., Luhman, J. (eds.) Particle Acceleration and Transport in the Heliosphere and Beyond – 7th Annual Astrophysics Conference, American Institute of Physics CP1039, 156. Google Scholar
  9. Lario, D., Decker, R.B., Livi, S., Krimigis, S.M., Roelof, E.C., Russell, C.T., Fry, C.D.: 2005, J. Geophys. Res. 110, A09S11. doi: 10.1029/2004JA010940. CrossRefGoogle Scholar
  10. Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, J. Geophys. Res. 110, A09S06. doi: 10.1029/2004JA010926. CrossRefGoogle Scholar
  11. Malandraki, O.E., Marsden, R.G., Tranquille, C., Forsyth, R.J., Elliott, H.A., Lanzerotti, L.J., Geranios, A.: 2007, J. Geophys. Res. 112, A06111. doi: 10.1029/2006JA011876. CrossRefGoogle Scholar
  12. Reames, D.V., Ng, C.K.: 1998, Astrophys. J. 504, 1002. CrossRefADSGoogle Scholar
  13. Reames, D.V., Ng, C.K., Berdichevsky, D.: 2001, Astrophys. J. 550, 1064. CrossRefADSGoogle Scholar
  14. Richardson, I.G., Farrugia, C.J., Winterhalter, D.: 1994, J. Geophys. Res. 99, 2513. CrossRefADSGoogle Scholar
  15. Ruffolo, D., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Wechakama, M., Bieber, J.W., Evenson, P., Pyle, R.: 2006, Astrophys. J. 639, 1186. CrossRefADSGoogle Scholar
  16. Shea, M.A., Cramp, J.L., Duldig, M.L., Smart, D.F., Humble, J.E., Fenton, A.G., Fenton, K.B.: 1995. In: Iucci, N., Lamanna, E. (eds.) Proc. 24th Int. Cosmic Ray Conf. 4, International Union of Pure and Applied Physics, Rome, 208. Google Scholar
  17. Shen, C., Wang, Y., Ye, P., Wang, S.: 2008, Solar Phys. 252, 409. doi: 10.1007/s11207-008-9268-7. CrossRefADSGoogle Scholar
  18. Swinson, D.B., Shea, M.A.: 1990, Geophys. Res. Lett 17, 1073. CrossRefADSGoogle Scholar
  19. Torsti, J., Riihonen, E., Kocharov, L.: 2004, Astrophys. J. 600, L83. CrossRefADSGoogle Scholar
  20. Tranquille, C., Sanderson, T.R., Marsden, R.G., Wenzel, K.-P., Smith, E.J.: 1987, J. Geophys. Res. 92, 6. CrossRefADSGoogle Scholar
  21. Vourlidas, A., Wu, S.T., Wang, A.H., Subramanian, P., Howard, R.A.: 2003, Astrophys. J. 598, 1392. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  2. 2.Department d’Astronomia i MeteorologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations