Solar Physics

, Volume 260, Issue 2, pp 299–320

Is Null-Point Reconnection Important for Solar Flux Emergence?

Article
  • 87 Downloads

Abstract

The role of null-point reconnection in a three-dimensional numerical magnetohydrodynamic (MHD) model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.

Sun: magnetic fields MHD Sun: atmosphere Sun: corona Plasmas Methods: numerical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11207_2009_9458_MOESM1_ESM.gif (40.2 mb)
Below is the link to the electronic supplementary material. (GIF 40.2 MB)

References

  1. Abbett, W.P., Fisher, G.H.: 2003, Astrophys. J. 582, 475. doi:10.1086/344613. CrossRefADSGoogle Scholar
  2. Abbett, W.P., Fisher, G.H., Fan, Y.: 2000, Astrophys. J. 540, 548. doi:10.1086/309316. CrossRefADSGoogle Scholar
  3. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Astron. Astrophys. 426, 1047. doi:10.1051/0004-6361:20035934. CrossRefADSGoogle Scholar
  4. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A.W.: 2005, Astrophys. J. 635, 1299. doi:10.1086/497533. CrossRefADSGoogle Scholar
  5. Aulanier, G., Pariat, E., Démoulin, P.: 2005, Astron. Astrophys. 444, 961. doi:10.1051/0004-6361:20053600. CrossRefADSGoogle Scholar
  6. Aulanier, G., Pariat, E., Démoulin, P., DeVore, C.R.: 2006, Solar Phys. 238, 347. doi:10.1007/s11207-006-0230-2. CrossRefADSGoogle Scholar
  7. Aulanier, G., Golub, L., DeLuca, E.E., Cirtain, J.W., Kano, R., Lundquist, L.L., Narukage, N., Sakao, T., Weber, M.A.: 2007, Science 318, 1588. doi:10.1126/science.1146143. CrossRefADSGoogle Scholar
  8. Beveridge, C., Priest, E.R., Brown, D.S.: 2002, Solar Phys. 209, 333. CrossRefADSGoogle Scholar
  9. Brown, D.S., Priest, E.R.: 1999, Proc. Roy. Soc. A 455, 3931. doi:10.1098/rspa.1999.0484. MATHMathSciNetADSGoogle Scholar
  10. Caligari, P., Moreno Insertis, F., Schüssler, M.: 1995, Astrophys. J. 441, 886. doi:10.1086/175410. CrossRefADSGoogle Scholar
  11. Cheung, M.C.M., Schüssler, M., Moreno-Insertis, F.: 2007, Astron. Astrophys. 467, 703. doi:10.1051/0004-6361:20077048. CrossRefADSGoogle Scholar
  12. Cook, G., Mackay, D.H., Nandi, D.: 2009, Astrophys. J., submitted. Google Scholar
  13. De Moortel, I., Galsgaard, K.: 2006a, Astron. Astrophys. 451, 1101. doi:10.1051/0004-6361:20054587. CrossRefADSGoogle Scholar
  14. De Moortel, I., Galsgaard, K.: 2006b, Astron. Astrophys. 459, 627. doi:10.1051/0004-6361:20065716. CrossRefADSGoogle Scholar
  15. Démoulin, P.: 2006, Adv. Space Res. 37, 1269. doi:10.1016/j.asr.2005.03.085. CrossRefADSGoogle Scholar
  16. Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, J. Geophys. Res. 101, 7631. doi:10.1029/95JA03558. CrossRefADSGoogle Scholar
  17. Fan, Y., Gibson, S.E.: 2004, Astrophys. J. 609, 1123. doi:10.1086/421238. CrossRefADSGoogle Scholar
  18. Fukao, S., Ugai, M., Tsuda, T.: 1975, Rep. Ionos. Space Res. Japan 29, 133. ADSGoogle Scholar
  19. Galsgaard, K., Titov, V.S., Neukirch, T.: 2003, Astrophys. J. 595, 506. doi:10.1086/377258. CrossRefADSGoogle Scholar
  20. Galsgaard, K., Moreno Insertis, F., Archontis, V., Hood, A.: 2005, Astrophys. J. 618, L153. doi:10.1086/427872. CrossRefADSGoogle Scholar
  21. Galsgaard, K., Archontis, V., Moreno-Insertis, F., Hood, A.W.: 2007, Astrophys. J. 666, 516. doi:10.1086/519756. CrossRefADSGoogle Scholar
  22. Greene, J.M.: 1988, J. Geophys. Res. 93, 8583. doi:10.1029/JA093iA08p08583. CrossRefADSGoogle Scholar
  23. Haynes, A.L., Parnell, C.E.: 2007, Phys. Plasmas 14, 082107. doi:10.1063/1.2756751. CrossRefADSGoogle Scholar
  24. Haynes, A.L., Parnell, C.E., Galsgaard, K., Priest, E.R.: 2007, Roy. Soc. Lond. Proc. Ser. A 463, 1097. MATHCrossRefMathSciNetADSGoogle Scholar
  25. Hesse, M., Schindler, K.: 1988, J. Geophys. Res. 93, 5559. CrossRefADSGoogle Scholar
  26. Holzwarth, V., Mackay, D.H., Jardine, M.: 2006, Mon. Not. Roy. Astron. Soc. 369, 1703. doi:10.1111/j.1365-2966.2006.10407.x. CrossRefADSGoogle Scholar
  27. Hornig, G.: 2009, Private communication. Google Scholar
  28. Hornig, G., Priest, E.R.: 2003, Phys. Plasmas 10(7), 2712. http://link.aip.org/link/?PHP/10/2712/1. CrossRefMathSciNetADSGoogle Scholar
  29. Inverarity, G.W., Priest, E.R.: 1999, Solar Phys. 186, 99. CrossRefADSGoogle Scholar
  30. Lau, Y.T., Finn, J.M.: 1990, Astrophys. J. 350, 672. doi:10.1086/168419. CrossRefMathSciNetADSGoogle Scholar
  31. Longcope, D.W.: 2005, Living Rev. Solar Phys. 2, 7. ADSGoogle Scholar
  32. Longcope, D.W., Cowley, S.C.: 1996, Phys. Plasmas 3, 2885. doi:10.1063/1.871627. CrossRefADSGoogle Scholar
  33. Longcope, D.W., Parnell, C.E.: 2009, Solar Phys. 254, 51. doi:10.1007/s11207-008-9281-x. CrossRefADSGoogle Scholar
  34. Longcope, D.W., Fisher, G.H., Arendt, S.: 1996, Astrophys. J. 464, 999. doi:10.1086/177387. CrossRefADSGoogle Scholar
  35. Maclean, R.C., Priest, E.R.: 2007, Solar Phys. 243, 171. doi:10.1007/s11207-007-0450-0. CrossRefADSGoogle Scholar
  36. Magara, T., Longcope, D.W.: 2003, Astrophys. J. 586, 630. doi:10.1086/367611. CrossRefADSGoogle Scholar
  37. Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Astrophys. J. 610, 588. doi:10.1086/421516. CrossRefADSGoogle Scholar
  38. Martínez Sykora, J., Hansteen, V., Carlsson, M.: 2008, Astrophys. J. 679, 871. doi:10.1086/587028. CrossRefADSGoogle Scholar
  39. Matsumoto, R., Shibata, K.: 1992, Publ. Astron. Soc. Japan 44, 167. ADSGoogle Scholar
  40. Murray, M.J., Hood, A.W.: 2007, Astron. Astrophys. 470, 709. doi:10.1051/0004-6361:20077251. MATHCrossRefADSGoogle Scholar
  41. Nordlund, Å., Galsgaard, K.: 1995, Technical report, Astronomical Observatory, Copenhagen University. http://www.astro.ku.dk/~aake/papers/95.ps.gz.
  42. Otto, A.: 2009, In: International Cambridge Reconnection Workshop, Fairbanks, Alaska, 7–12 August 2009. Google Scholar
  43. Parnell, C.E., Haynes, A.L., Galsgaard, K.: 2008, Astrophys. J. 675, 1656. doi:10.1086/527532. CrossRefADSGoogle Scholar
  44. Parnell, C.E., Haynes, A.L., Galsgaard, K.: 2009, J. Geophys. Res. doi:10.1029/2009JA014557.
  45. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, Phys. Plasmas 3, 759. CrossRefADSGoogle Scholar
  46. Pontin, D.I., Galsgaard, K.: 2007, J. Geophys. Res. (Space Phys.) 112, 03103. doi:10.1029/2006JA011848. CrossRefGoogle Scholar
  47. Pontin, D.I., Hornig, G., Priest, E.R.: 2004, Geophys. Astrophys. Fluid Dyn. 98, 407. CrossRefMathSciNetADSGoogle Scholar
  48. Pontin, D.I., Hornig, G., Priest, E.R.: 2005, Geophys. Astrophys. Fluid Dyn. 99, 77. CrossRefMathSciNetADSGoogle Scholar
  49. Priest, E.R., Démoulin, P.: 1995, J. Geophys. Res. 100, 23443. doi:10.1029/95JA02740. CrossRefADSGoogle Scholar
  50. Priest, E.R., Titov, V.S.: 1996, Philos. Trans. Roy. Soc. A 354, 2951. MATHCrossRefMathSciNetADSGoogle Scholar
  51. Priest, E.R., Heyvaerts, J.F., Title, A.M.: 2002, Astrophys. J. 576, 533. doi:10.1086/341539. CrossRefADSGoogle Scholar
  52. Priest, E.R., Longcope, D.W., Heyvaerts, J.: 2005, Astrophys. J. 624, 1057. doi:10.1086/429312. CrossRefADSGoogle Scholar
  53. Régnier, S., Parnell, C.E., Haynes, A.L.: 2008, Astron. Astrophys. 484, 47. doi:10.1051/0004-6361:200809826. CrossRefGoogle Scholar
  54. Schindler, K., Hesse, M., Birn, J.: 1988, J. Geophys. Res. 93, 5547. CrossRefADSGoogle Scholar
  55. Schüssler, M., Caligari, P., Ferriz Mas, A., Moreno Insertis, F.: 1994, Astron. Astrophys. 281, 69. ADSGoogle Scholar
  56. Simpson, W.M.R.: 2008, Coronal null points and solar flares: an investigation of magnetic field topology, private communication. Google Scholar
  57. Spiegel, E.A., Zahn, J.P.: 1992, Astron. Astrophys. 265, 106. ADSGoogle Scholar
  58. Titov, V.S.: 2007, Astrophys. J. 660, 863. doi:10.1086/512671. CrossRefADSGoogle Scholar
  59. Titov, V.S., Priest, E.R., Demoulin, P.: 1993, Astron. Astrophys. 276, 564. ADSGoogle Scholar
  60. Titov, V.S., Galsgaard, K., Neukirch, T.: 2003, Astrophys. J. 582, 1172. doi:10.1086/344799. CrossRefADSGoogle Scholar
  61. Wilmot-Smith, A.L., De Moortel, I.: 2007, Astron. Astrophys. 473, 615. doi:10.1051/0004-6361:20077455. CrossRefADSGoogle Scholar
  62. Wilmot-Smith, A.L., Hornig, G., Priest, E.R.: 2006, Proc. Roy. Soc. A 462, 2877. MATHCrossRefMathSciNetADSGoogle Scholar
  63. Yokoyama, T., Shibata, K.: 1996, Publ. Astron. Soc. Japan 48, 353. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of St AndrewsSt AndrewsUK
  2. 2.Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations