Solar Physics

, Volume 259, Issue 1–2, pp 389–416 | Cite as

The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations

  • C. Foullon
  • B. Lavraud
  • N. C. Wardle
  • C. J. Owen
  • H. Kucharek
  • A. N. Fazakerley
  • D. E. Larson
  • E. Lucek
  • J. G. Luhmann
  • A. Opitz
  • J.-A. Sauvaud
  • R. M. Skoug
STEREO Results at Solar Minimum

Abstract

Multiple current sheet crossings are ubiquitous features of the solar wind associated with high-beta plasma sheets, notably during the passage of the heliospheric current sheet (HCS). As the HCS is being convected past near-Earth, we attempt to resolve spatial scales and temporal variations of the apparent layered structure of the HCS, including adjacent large scale field reversals. We use several spacecraft for good spatial and cross-scale coverage, spanning 550 RE across and 900 RE along the Sun – Earth line: STEREO, ACE and Cluster. The multi-spacecraft magnetic and plasma observations within the leading edge of the sector boundary are consistent with i) a broad multi-layered structure; ii) occasional non-planar structures and Alfvénic fluctuations; iii) various stages of transient outflowing loops formed by interchange reconnection. By comparison of the observations at each spacecraft, we obtain a synthesis of the evolution between the patterns of loops, and hence of the transient outflow evolution along the sector boundary. In particular, we present circumstantial evidence that a heat flux dropout, traditionally signalling disconnection, can arise from interchange reconnection and scattering. Moreover, the inter-spacecraft comparison eliminates ambiguities between interpretations of electron counterstreaming. Overall, the sector boundary layer remains, locally, a steady structure as it is convected in the solar wind across a radial heliospheric distance of 560 – 580 RE. However, non-planar structures on the Cluster spatial scale, as well as the variations in angular changes and transition durations on the broader scale, indicate that we are not following the evolution of single loops but more likely a bunch of loops with variable properties.

Keywords

Heliospheric current sheet Slow solar wind 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., et al.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 136, 203. CrossRefADSGoogle Scholar
  2. Balogh, A., Carr, C.M., Acuña, M.H., Dunlop, M.W., Beek, T.J., Brown, P., et al.: 2001, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207. ADSGoogle Scholar
  3. Bame, S.J., Asbridge, J.R., Feldman, W.C., Gosling, J.T., Paschmann, G., Skopke, N.: 1980, Deceleration of the solar wind upstream from the Earth’s bow shock and the origin of diffuse upstream ions. J. Geophys. Res. 85, 2981. CrossRefADSGoogle Scholar
  4. Behannon, K.W., Neubauer, F.M., Barnstorf, H.: 1981, Fine-scale characteristics of interplanetary sector boundaries. J. Geophys. Res. 86, 3273. CrossRefADSGoogle Scholar
  5. Belcher, J.W., Davis, L., Jr.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534. CrossRefADSGoogle Scholar
  6. Blanco, J.J., Rodríguez-Pacheco, J., Hidalgo, M.A., Sequeiros, J.: 2006, Analysis of the heliospheric current sheet fine structure: single or multiple current sheets. J. Atmos. Solar-Terr. Phys. 68, 2173. CrossRefADSGoogle Scholar
  7. Bonifazi, C., Moreno, G., Lazarus, A.J., Sullivan, J.D.: 1980, Deceleration of the solar wind in the Earth’s foreshock region – ISEE 2 and IMP 8 observations. J. Geophys. Res. 85, 6031. CrossRefADSGoogle Scholar
  8. Borovsky, J.E.: 2008, Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, A08110. CrossRefGoogle Scholar
  9. Burlaga, L.F., Lemaire, J.F., Turner, J.M.: 1977, Interplanetary current sheets at 1 AU. J. Geophys. Res. 82, 3191. CrossRefADSGoogle Scholar
  10. Crooker, N.U., Pagel, C.: 2008, Residual strahls in solar wind electron dropouts: signatures of magnetic connection to the Sun, disconnection, or interchange reconnection? J. Geophys. Res. 113, A02106. CrossRefGoogle Scholar
  11. Crooker, N.U., Burton, M.E., Siscoe, G.L., Kahler, S.W., Gosling, J.T., Smith, E.J.: 1996, Solar wind streamer belt structure. J. Geophys. Res. 101, 24 331. ADSGoogle Scholar
  12. Crooker, N.U., Larson, D.E., Kahler, S.W., Lamassa, S.M., Spence, H.E.: 2003, Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts. Geophys. Res. Lett. 30(12), 1619. CrossRefADSGoogle Scholar
  13. Crooker, N.U., Huang, C.-L., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004a, Heliospheric plasma sheets. J. Geophys. Res. 109, A03107. CrossRefGoogle Scholar
  14. Crooker, N.U., Kahler, S.W., Larson, D.E., Lin, R.P.: 2004b, Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109, A03108. CrossRefGoogle Scholar
  15. Fairfield, D.H.: 1971, Average and unusual location of the Earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700. CrossRefADSGoogle Scholar
  16. Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D.: 1973, Solar wind heat transport in the vicinity of the Earth’s bow shock. J. Geophys. Res. 78, 3697. CrossRefADSGoogle Scholar
  17. Feldman, W.C., Anderson, R.C., Asbridge, J.R., Bame, S.J., Gosling, J.T., Zwickl, R.D.: 1982, Plasma electron signature of magnetic connection to the Earth’s bow shock – ISEE 3. J. Geophys. Res. 87, 632. CrossRefADSGoogle Scholar
  18. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1998, On the slow solar wind. Space Sci. Rev. 86, 51. CrossRefADSGoogle Scholar
  19. Foullon, C., Owen, C.J., Dasso, S., Green, L.M., Dandouras, I., Elliott, H.A., et al.: 2007, Multi-spacecraft study of the 21 January 2005 ICME. Evidence of current sheet substructure near the periphery of a strongly expanding, fast magnetic cloud. Solar Phys. 244, 139. CrossRefADSGoogle Scholar
  20. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., et al.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. CrossRefADSGoogle Scholar
  21. Gosling, J.T., McComas, D.J.: 1987, Field line draping about fast coronal mass ejecta – A source of strong out-of-the-ecliptic interplanetary magnetic fields. Geophys. Res. Lett. 14, 355. CrossRefADSGoogle Scholar
  22. Gosling, J.T., Skoug, R.M., Feldman, W.C.: 2001, Solar wind electron halo depletions at 90deg  pitch angle. Geophys. Res. Lett. 28, 4155. CrossRefADSGoogle Scholar
  23. Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: 2005, Magnetic disconnection from the Sun: observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophys. Res. Lett. 32, L05105. CrossRefGoogle Scholar
  24. Gosling, J.T., McComas, D.J., Skoug, R.M., Smith, C.W.: 2006, Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind. Geophys. Res. Lett. 33, L17102. CrossRefADSGoogle Scholar
  25. Hollweg, J.V.: 1982, Surface waves on solar wind tangential discontinuities. J. Geophys. Res. 87, 8065. CrossRefADSGoogle Scholar
  26. Johnstone, A.D., Alsop, C., Burge, S., Carter, P.J., Coates, A.J., Coker, A.J., et al.: 1997, Peace: a plasma electron and current experiment. Space Sci. Rev. 79, 351. CrossRefADSGoogle Scholar
  27. Kahler, S., Lin, R.P.: 1994, The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons. Geophys. Res. Lett. 21, 1575. CrossRefADSGoogle Scholar
  28. Klein, L., Burlaga, L.F.: 1980, Interplanetary sector boundaries 1971 – 1973. J. Geophys. Res. 85, 2269. CrossRefADSGoogle Scholar
  29. Knetter, T., Neubauer, F.M., Horbury, T., Balogh, A.: 2004, Four-point discontinuity observations using Cluster magnetic field data: a statistical survey. J. Geophys. Res. 109, A06102. CrossRefGoogle Scholar
  30. Lavraud, B., Gosling, J.T., Rouillard, A., Fedorov, A., Opitz, A., Sauvaud, J.-A., et al.: 2009, Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 RE. Solar Phys. 256, 379. CrossRefADSGoogle Scholar
  31. Lepping, R.P., Wu, C.-C., McClernan, K.: 2003, Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res. 108, 1279. CrossRefGoogle Scholar
  32. Lepping, R.P., Szabo, A., Peredo, M., Hoeksema, J.T.: 1996, Large-scale properties and solar connection of the heliospheric current and plasma sheets: WIND observations. Geophys. Res. Lett. 23, 1199. CrossRefADSGoogle Scholar
  33. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117. CrossRefADSGoogle Scholar
  34. McComas, D.J., Gosling, J.T., Phillips, J.L., Bame, S.J., Luhmann, J.G., Smith, E.J.: 1989, Electron heat flux dropouts in the solar wind – Evidence for interplanetary magnetic field reconnection? J. Geophys. Res. 94, 6907. CrossRefADSGoogle Scholar
  35. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., et al.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563. CrossRefADSGoogle Scholar
  36. Moldwin, M.B., Phillips, J.L., Gosling, J.T., Scime, E.E., McComas, D.J., Bame, S.J., et al.: 1995, Ulysses observation of a noncoronal mass ejection flux rope: evidence of interplanetary magnetic reconnection. J. Geophys. Res. 100, 19 903. ADSGoogle Scholar
  37. Nakagawa, T.: 1993, Solar source of the interplanetary planar magnetic structures. Solar Phys. 147, 169. CrossRefADSGoogle Scholar
  38. Nash, A.G., Sheeley, N.R., Jr., Wang, Y.-M.: 1988, Mechanisms for the rigid rotation of coronal holes. Solar Phys. 117, 359. CrossRefADSGoogle Scholar
  39. Neugebauer, M.: 1985, Alignment of velocity and field changes across tangential discontinuities in the solar wind. J. Geophys. Res. 90, 6627. CrossRefADSGoogle Scholar
  40. Neugebauer, M.: 2008, Heliospheric sector boundaries: single or multiple? J. Geophys. Res. 113, A12106. CrossRefADSGoogle Scholar
  41. Neugebauer, M., Alexander, C.J., Schwenn, R., Richter, A.K.: 1986, Tangential discontinuities in the solar wind – Correlated field and velocity changes and the Kelvin – Helmholtz instability. J. Geophys. Res. 91, 13 694. CrossRefADSGoogle Scholar
  42. Ogilvie, K.W., Scudder, J.D., Sugiura, M.: 1971, Electron energy flux in the solar wind. J. Geophys. Res. 76, 8165. CrossRefADSGoogle Scholar
  43. Owens, M.J., Crooker, N.U.: 2007, Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget. J. Geophys. Res. 112, A06106. CrossRefGoogle Scholar
  44. Pilipp, W.G., Muehlhaeuser, K.-H., Miggenrieder, H., Montgomery, M.D., Rosenbauer, H.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 1075. CrossRefADSGoogle Scholar
  45. Rème, H., Aoustin, C., Bosqued, J.M., Dandouras, I., Lavraud, B., Sauvaud, J.A., et al.: 2001, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303. ADSCrossRefGoogle Scholar
  46. Roberts, D.A., Klein, L.W., Goldstein, M.L., Matthaeus, W.H.: 1987, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind – Voyager observations. J. Geophys. Res. 92, 11 021. ADSGoogle Scholar
  47. Roelof, E.C., Sibeck, D.G.: 1993, Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J. Geophys. Res. 98, 21 421. CrossRefADSGoogle Scholar
  48. Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., Miggenrieder, H., Montgomery, M.D., et al.: 1977, A survey on initial results of the HELIOS plasma experiment. J. Geophys. – Z. Geophys. 42, 561. Google Scholar
  49. Rouillard, A.P., Savani, N., Davies, J.A., Lavraud, B., Forsyth, R.J., Morley, S.K., et al.: 2009, A multispacecraft analysis of a small scale transient entrained by solar wind streams. Solar Phys. 256, 307. CrossRefADSGoogle Scholar
  50. Russell, C.T., Mellott, M.M., Smith, E.J., King, J.H.: 1983, Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals. J. Geophys. Res. 88, 4739. CrossRefADSGoogle Scholar
  51. Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L., Fedorov, A., et al.: 2008, The IMPACT solar wind electron analyzer (SWEA). Space Sci. Rev. 136, 227. CrossRefADSGoogle Scholar
  52. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. CrossRefADSGoogle Scholar
  53. Smith, E.J.: 2001, The heliospheric current sheet. J. Geophys. Res. 106, 15819. CrossRefADSGoogle Scholar
  54. Sonnerup, B.U.Ö., Scheible, M.: 1998, Minimum and maximum variance analysis. In: Pashmann, G., Daly, P.W. (eds.) Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Report SR-001, Bern, Chap. 8, 185. Google Scholar
  55. Stansberry, J.A., Gosling, J.T., Thomsen, M.F., Bame, S.J., Smith, E.J.: 1988, Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3. J. Geophys. Res. 93, 1975. CrossRefADSGoogle Scholar
  56. Suess, S.T., McComas, D.J., Bame, S.J., Goldstein, B.E.: 1995, Solar wind eddies and the heliospheric current sheet. J. Geophys. Res. 100, 12 261. CrossRefADSGoogle Scholar
  57. Tsurutani, B.T., Ho, C.M., Smith, E.J., Neugebauer, M., Goldstein, B.E., Mok, J.S., et al.: 1994, The relationship between interplanetary discontinuities and Alfven waves: ULYSSES observations. Geophys. Res. Lett. 21, 2267. CrossRefADSGoogle Scholar
  58. Tsurutani, B.T., Lakhina, G.S., Verkhoglyadova, O.P., Echer, E., Guarnieri, F.L.: 2007, Comment on “Comment on the abundances of rotational and tangential discontinuities in the solar wind” by M. Neugebauer. J. Geophys. Res. 112, A03101. CrossRefGoogle Scholar
  59. Villante, U., Bruno, R., Mariani, F., Burlaga, L.F., Ness, N.F.: 1979, The shape and location of the sector boundary surface in the inner solar system. J. Geophys. Res. 84, 6641. CrossRefADSGoogle Scholar
  60. Wang, Y.-M., Nash, A.G., Sheeley, N.R., Jr.: 1989, Magnetic flux transport on the Sun. Science 245, 712. CrossRefADSGoogle Scholar
  61. Wang, Y.-M., Sheeley, N.R., Socker, D.G., Howard, R.A., Rich, N.B.: 2000, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25 133. ADSGoogle Scholar
  62. Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., et al.: 2006, Understanding interplanetary coronal mass ejection signatures. Report of Working Group B. Space Sci. Rev. 123, 177. CrossRefADSGoogle Scholar
  63. Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667. CrossRefADSGoogle Scholar
  64. Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G., Schwadron, N.A., Smith, C.W., et al.: 2001, On the origin of microscale magnetic holes in the solar wind. J. Geophys. Res. 106, 16 001. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Foullon
    • 1
    • 2
  • B. Lavraud
    • 3
    • 4
  • N. C. Wardle
    • 1
    • 2
  • C. J. Owen
    • 1
  • H. Kucharek
    • 5
  • A. N. Fazakerley
    • 1
  • D. E. Larson
    • 6
  • E. Lucek
    • 7
  • J. G. Luhmann
    • 6
  • A. Opitz
    • 3
    • 4
  • J.-A. Sauvaud
    • 3
    • 4
  • R. M. Skoug
    • 8
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.Centre for Fusion, Space and Astrophysics, Department of PhysicsUniversity of WarwickCoventryUK
  3. 3.Centre d’Etudes Spatiales des Rayonnements (CESR)Université de Toulouse (UPS)ToulouseFrance
  4. 4.Centre National de la Recherche Scientifique, UMR 5187ToulouseFrance
  5. 5.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  6. 6.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  7. 7.Blackett LaboratoryImperial College LondonLondonUK
  8. 8.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations