Solar Physics

, Volume 260, Issue 2, pp 251–260 | Cite as

Nonlinear Evolution of Axisymmetric Twisted Flux Tubes in the Solar Tachocline

Article

Abstract

We numerically study the evolution of magnetic fields and fluid flows in a thin spherical shell. We take the initial field to be a latitudinally confined, predominantly toroidal flux tube. For purely toroidal, untwisted flux tubes, we recover previously known radial-shredding instabilities, and show further that in the nonlinear regime these instabilities can very effectively destroy the original field. For twisted flux tubes, also including a poloidal component, there are several possibilities, including the suppression of the radial-shredding instability, but also a more directly induced evolution, brought about because twisted flux tubes in general are not equilibrium solutions of the governing equations.

Keywords

Interior, tachocline Instabilities Magnetohydrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brun, A.S., Toomre, J.: 2002, Astrophys. J. 570, 865. CrossRefADSGoogle Scholar
  2. Cally, P.S., Dikpati, M., Gilman, P.A.: 2008, Mon. Not. Roy. Astron. Soc. 391, 891 (CDG08). CrossRefADSGoogle Scholar
  3. Dikpati, M., Gilman, P.A.: 1999, Astrophys. J. 512, 417. CrossRefADSGoogle Scholar
  4. Dikpati, M., Gilman, P.A., Cally, P.S., Miesch, M.S.: 2009, Astrophys. J. 692, 1421. CrossRefADSGoogle Scholar
  5. Fan, Y.: 2004, Living Rev. Solar Phys. 1 (cited on 1 August 2009). http://www.livingreviews.org/lrsp-2004-1.
  6. Gilman, P.A., Cally, P.S.: 2007, In: Hughes, D., Rosner, R., Weiss, N. (eds.) The Solar Tachocline, Cambridge University Press, Cambridge, 243. CrossRefGoogle Scholar
  7. Gilman, P.A., Fox, P.A.: 1997, Astrophys. J. 484, 439. CrossRefADSGoogle Scholar
  8. Gough, D.O., Tayler, R.J.: 1966, Mon. Not. Roy. Astron. Soc. 133, 85. ADSGoogle Scholar
  9. Hollerbach, R.: 2000, Int. J. Numer. Methods Fluids 32, 773. MATHCrossRefMathSciNetADSGoogle Scholar
  10. Hughes, D., Rosner, R., Weiss, N. (eds.): 2007, The Solar Tachocline, Cambridge University Press, Cambridge. Google Scholar
  11. Watson, M.: 1981, Geophys. Astrophys. Fluid Dyn. 16, 285. MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of LeedsLeedsUK
  2. 2.Centre for Stellar and Planetary Astrophysics, School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations