Solar Physics

, 259:381 | Cite as

The Solar Wind Quasi-Invariant Observed by STEREO A and B at Solar Minimum 2007 and Comparison with Two Other Minima

  • M. LeitnerEmail author
  • C. J. Farrugia
  • A. Galvin
  • K. D. C. Simunac
  • H. K. Biernat
  • V. A. Osherovich
STEREO Science Results at Solar Minimum


The solar wind quasi-invariant (QI) is defined as the ratio of the solar wind magnetic energy density to the plasma kinetic energy density (i.e., the inverse square of the Alfvén Mach number). Previous work has found this quantity to be a good proxy for solar activity, correlating very well with the sunspot number at various heliospheric distances. It has the advantage of being locally determined from in situ measurements and can thus function as a heliospheric index of solar activity. Using STEREO A, STEREO B, and Wind data we obtain the distribution of QIs during the current solar activity minimum (March to December 2007). (1) We investigate whether this minimum is indeed weaker than previous ones by comparing this QI distribution with those during two other solar activity minima: 1995, using Wind data, and 1974, using Helios data at 1 AU. We find that, on average, QI(2007) is lower than during the previous two minima, indicating weaker solar activity. It also implies weaker MHD effects in solar wind flow around planetary magnetospheres, which, in turn, alters the solar wind’s interaction with them. (2) In all three solar cycle minima considered we find that the QI distributions are reasonably well represented by a log-normal distribution, for which we give the respective mean and standard deviations. These values are used in comparing the QIs over the three solar minima.


Solar wind Solar cycle minima Coronal mass ejections Log-normal distribution 


  1. Burlaga, L.F., King, J.H.: 1979, Intense interplanetary magnetic fields observed by geocentric spacecraft during 1963 – 1975. J. Geophys. Res. 84, 6633 – 6640. doi: 10.1029/JA084iA11p06633. CrossRefADSGoogle Scholar
  2. Burlaga, L.F., Szabó, A.: 1999, Fast and slow flows in the solar wind near the ecliptic at 1 AU? Space Sci. Rev. 87, 137 – 140. doi: 10.1023/A:1005186720589. CrossRefADSGoogle Scholar
  3. Crow, E.L., Shimizu, K. (eds.): 1988, Lognormal Distributions: Theory and Applications, Statistics, Textbooks and Monographs 88, Marcel Dekker, New York. zbMATHGoogle Scholar
  4. Desai, M.I., Mason, G.M., Dwyer, J.R., Mazur, J.E., von Rosenvinge, T.T., Lepping, R.P.: 2000, Characteristics of energetic (≥30 keV nucleon−1) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. J. Geophys. Res. 105, 61 – 78. doi: 10.1029/1999JA900406. CrossRefADSGoogle Scholar
  5. Desai, M.I., Mason, G.M., Müller-Mellin, R., Korth, A., Mall, U., Dwyer, J.R., Rosenvinge, T.T.: 2008, The spatial distribution of upstream ion events from the Earth’s bow shock measured by ACE, Wind, and STEREO. J. Geophys. Res. 113, A08103. doi: 10.1029/2007JA012909. CrossRefGoogle Scholar
  6. Erkaev, N.V., Farrugia, C.J., Biernat, H.K., Burlaga, L.F., Bachmaier, G.A.: 1995, Ideal MHD flow behind interplanetary shocks driven by magnetic clouds. J. Geophys. Res. 100, 19919 – 19932. doi: 10.1029/95JA01617. CrossRefADSGoogle Scholar
  7. Fainberg, J., Osherovich, V.A.: 2002, Solar wind quasi-invariant as a heliospheric index of solar activity. In: Solar Variability: From Core to Outer Frontiers SP-506, ESA, Noordwijk. Google Scholar
  8. Fainberg, J., Osherovich, V.A., Stone, R.G.: 2001, Pioneer Venus Orbiter observations of a solar wind quasi-invariant. Geophys. Res. Lett. 28, 1447 – 1450. doi: 10.1029/2000GL012160. CrossRefADSGoogle Scholar
  9. Farrugia, C.J., Erkaev, N.V., Biernat, H.K., Burlaga, L.F.: 1995, Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res. 100, 19245 – 19258. doi: 10.1029/95JA01080. CrossRefADSGoogle Scholar
  10. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J.A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L.M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R.F., Koeten, M., Thompson, B., Steinfeld, D.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO Observatories. Space Sci. Rev. 136, 437 – 486. doi: 10.1007/s11214-007-9296-x. CrossRefADSGoogle Scholar
  11. Lavraud, B., Borovsky, J.E.: 2008, The altered solar wind – magnetosphere interaction at low Mach numbers: coronal mass ejections. J. Geophys. Res. 113, A00B08. doi: 10.1029/2008JA013192. CrossRefGoogle Scholar
  12. Leitner, M., Farrugia, C.J., Osherovich, V.A., Fainberg, J., Biernat, H.K., Ogilvie, K.W., Schwenn, R., Torbert, R.: 2005, The relative distribution of the magnetic and plasma kinetic energy densities in the inner heliosphere (<1 AU). In: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere SP-592, ESA, Noordwijk, pp. 743 – 746. Google Scholar
  13. Limpert, E., Stahel, W.A., Abbt, M.: 2001, Log-normal distributions across the sciences: key and clues. BioScience 51, 341 – 352. doi: 10.1016/j.physa.2005.06.097. CrossRefGoogle Scholar
  14. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.A., Aoustin, C., Mewaldt, R.A., Cummings, A.C., Stone, E.C., Davis, A.J., Cook, W.R., Kecman, B., Wiedenbeck, M.E., von Rosenvinge, T., Acuna, M.H., Reichenthal, L.S., Shuman, S., Wortman, K.A., Reames, D.V., Mueller-Mellin, R., Kunow, H., Mason, G.M., Walpole, P., Korth, A., Sanderson, T.R., Russell, C.T., Gosling, J.T.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117 – 184. doi: 10.1007/s11214-007-9170-x. CrossRefADSGoogle Scholar
  15. Osherovich, V.A., Fainberg, J., Stone, R.G.: 1999, Solar wind quasi-invariant as a new index of solar activity. Geophys. Res. Lett. 26, 2597 – 2600. doi: 10.1029/1999GL900583. CrossRefADSGoogle Scholar
  16. Osherovich, V.A., Benson, R.F., Fainberg, J., Green, J.L., Garcia, L., Boardsen, S., Tsyganenko, N., Reinisch, B.W.: 2007, Enhanced high-altitude polar cap plasma and magnetic field values in response to the interplanetary magnetic cloud that caused the great storm of 31 March 2001: A case study for a new magnetospheric index. J. Geophys. Res. 112, A06247. doi: 10.1029/2006JA012105. CrossRefGoogle Scholar
  17. Zwan, B.J., Wolf, R.A.: 1976, Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636 – 1648. doi: 10.1029/JA081i010p01636. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Leitner
    • 1
    Email author
  • C. J. Farrugia
    • 2
  • A. Galvin
    • 2
  • K. D. C. Simunac
    • 2
  • H. K. Biernat
    • 3
  • V. A. Osherovich
    • 4
  1. 1.Institute of Astro- and Particle PhysicsUniversity of InnsbruckInnsbruckAustria
  2. 2.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations