Solar Physics

, Volume 258, Issue 2, pp 219–241 | Cite as

Oscillatory Response of the 3D Solar Atmosphere to the Leakage of Photospheric Motion

Article

Abstract

The direct propagation of acoustic waves, driven harmonically at the solar photosphere, into the three-dimensional solar atmosphere is examined numerically in the framework of ideal magnetohydrodynamics. It is of particular interest to study the leakage of 5-minute global solar acoustic oscillations into the upper, gravitationally stratified and magnetised atmosphere, where the modelled solar atmosphere possesses realistic temperature and density stratification. This work aims to complement and bring further into the 3D domain our previous efforts (by Erdélyi et al., 2007, Astron. Astrophys. 467, 1299) on the leakage of photospheric motions and running magnetic-field-aligned waves excited by these global oscillations. The constructed model atmosphere, most suitable perhaps for quiet Sun regions, is a VAL IIIC derivative in which a uniform magnetic field is embedded. The response of the atmosphere to a range of periodic velocity drivers is numerically investigated in the hydrodynamic and magnetohydrodynamic approximations. Among others the following results are discussed in detail: i) High-frequency waves are shown to propagate from the lower atmosphere across the transition region, experiencing relatively low reflection, and transmitting most of their energy into the corona; ii) the thin transition region becomes a wave guide for horizontally propagating surface waves for a wide range of driver periods, and particularly at those periods that support chromospheric standing waves; iii) the magnetic field acts as a waveguide for both high- and low-frequency waves originating from the photosphere and propagating through the transition region into the solar corona.

Keywords

Magnetic flux tube MHD waves Solar atmosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11207_2009_9407_MOESM1_ESM.gif (3.4 mb)
Below is the link to the electronic supplementary material (GIF 3.44 MB)
11207_2009_9407_MOESM2_ESM.gif (3.5 mb)
Below is the link to the electronic supplementary material (GIF 3.48 MB)
11207_2009_9407_MOESM3_ESM.gif (1.8 mb)
Below is the link to the electronic supplementary material (GIF 1.81 MB)
11207_2009_9407_MOESM4_ESM.gif (1.4 mb)
Below is the link to the electronic supplementary material (GIF 1.41 MB)
11207_2009_9407_MOESM5_ESM.gif (2.9 mb)
Below is the link to the electronic supplementary material (GIF 2.91 MB)
11207_2009_9407_MOESM6_ESM.gif (2.4 mb)
Below is the link to the electronic supplementary material (GIF 2.36 MB)
11207_2009_9407_MOESM7_ESM.mov (29.9 mb)
Below is the link to the electronic supplementary material (MOV 29.8 MB)

References

  1. Aschwanden, M.: 2004, Physics of the Solar Corona. An Introduction, Praxis, Chichester. Google Scholar
  2. Banerjee, D., Erdélyi, R., Oliver, R., O’Shea, E.: 2007, Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3. CrossRefADSGoogle Scholar
  3. Bogdan, T., Carlsson, M., Hansteen, V., McMurry, A., Rosenthal, C., Johnson, M., Petty-Powell, S., Zita, E., Stein, R., McIntosh, S., Nordlund, Å.: 2003, Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626. CrossRefADSGoogle Scholar
  4. Cally, P.S.: 2001, Note on an exact solution for magnetoatmospheric waves. Astrophys. J. 548, 473. CrossRefADSGoogle Scholar
  5. De Moortel, I., Ireland, J., Hood, A., Walsh, R.: 2002, The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13. CrossRefADSGoogle Scholar
  6. De Pontieu, B., Erdélyi, R., De Wijn, A.: 2003, Intensity oscillations in the upper transition region above active region plage. Astrophys. J. 595, L63. CrossRefADSGoogle Scholar
  7. De Pontieu, B., Tarbell, T., Erdélyi, R.: 2003, Correlations on arcsecond scales between chromospheric and transition region emission in active regions. Astrophys. J. 590, 502. CrossRefADSGoogle Scholar
  8. De Pontieu, B., Erdélyi, R., James, S.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536. CrossRefADSGoogle Scholar
  9. De Pontieu, B., Erdélyi, R., De Moortel, I.: 2005, How to channel photospheric oscillations into the corona. Astrophys. J. 624, L61. CrossRefADSGoogle Scholar
  10. Erdélyi, R., Malins, C., Tóth, G., De Pontieu, B.: 2007, Leakage of photospheric acoustic waves into non-magnetic solar atmosphere. Astron. Astrophys. 467, 1299. CrossRefADSGoogle Scholar
  11. Finsterle, W., Haberreiter, M., Kosovichev, S., Schmutz, W.: 2008, P-mode leakage and Lyman-α intensity. In: Erdélyi, R., Mendoza-Brice no, C.A. (eds.) Waves and Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology. Proceedings of the International Astronomical Union, IAU Symp. 247, 74. Google Scholar
  12. Fleck, B., Deubner, F.L.: 1989, Dynamics of the solar atmosphere. II – Standing waves in the solar chromosphere. Astron. Astrophys. 224, 245. ADSGoogle Scholar
  13. Gudiksen, B., Nordlund, Å.: 2002, Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. 572, L113. CrossRefADSGoogle Scholar
  14. Hansteen, V., Carlsson, M., Gudiksen, B.: 2007, 3D numerical models of the chromosphere, transition region, and corona. In: Heinzel, P., Dorotovic, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas CS-368, Astron. Soc. Pac., San Francisco, 107. Google Scholar
  15. Hansteen, V., De Pontieu, B., Rouppe van der Voort, L., van Noort, M., Carlsson, M.: 2006, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. 647, 73. CrossRefADSGoogle Scholar
  16. Hasan, S., van Ballegooijen, A.: 2008, Dynamics of the solar magnetic network. II. Heating the magnetized chromosphere. Astrophys. J. 680, 1542. CrossRefADSGoogle Scholar
  17. Hasan, S., van Ballegooijen, A., Kalkofen, W., Steiner, O.: 2005, Dynamics of the solar magnetic network: Two-dimensional MHD simulations. Astrophys. J. 631, 1270. CrossRefADSGoogle Scholar
  18. Heggland, L., De Pontieu, B., Hansteen, V.H.: 2007, Numerical simulations of shock wave-driven chromospheric jets. Astrophys. J. 666, 1277. CrossRefADSGoogle Scholar
  19. Malins, C., Erdélyi, R.: 2007, Direct propagation of photospheric acoustic p modes into nonmagnetic solar atmosphere. Solar Phys. 246, 41. CrossRefADSGoogle Scholar
  20. Marsh, M., Walsh, R.: 2006, p-Mode propagation through the transition region into the solar corona. I. Observations. Astrophys. J. 643, 540. CrossRefADSGoogle Scholar
  21. Marsh, M., Walsh, R., De Moortel, I., Ireland, J.: 2003, Joint observations of propagating oscillations with SOHO/CDS and TRACE. Astron. Astrophys. 404, L37. CrossRefADSGoogle Scholar
  22. McDougall, A.M.D., Hood, A.W.: 2008, MHD mode conversion in a stratified atmosphere. In: Erdélyi, R., Mendoza-Briceno, C.A. (eds.) Waves and Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology. Proceedings of the International Astronomical Union, IAU Symp. 247, 296. Google Scholar
  23. McWhirter, R., Thonemann, P., Wilson, R.: 1975, The heating of the solar corona. II – A model based on energy balance. Astron. Astrophys. 40, 63. ADSGoogle Scholar
  24. Nakagawa, Y.: 1981, Evolution of magnetic field and atmospheric responses – Part two – formulation of proper boundary equations. Astrophys. J. 247, 707. CrossRefADSGoogle Scholar
  25. Nordlund, Å., Galsgaard, K.: 1995, A 3D MHD code for parallel computers. Tech. Rep., Astron. Obs. Univ. Copenhagen. Google Scholar
  26. Ofman, L., Davila, J.: 1998, Solar wind acceleration by large-amplitude nonlinear waves: Parametric study. J. Geophys Res. 103, 23667. CrossRefADSGoogle Scholar
  27. Ofman, L., Thompson, B.: 2002, Interaction of EIT waves with coronal active regions. Astrophys. J. 574, 440. CrossRefADSGoogle Scholar
  28. Ofman, L., Nakariakov, V., Sehgal, N.: 2000, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071. CrossRefADSGoogle Scholar
  29. Oliver, R., Ballester, J.: 1995, Magnetohydrodynamic waves in a bounded inhomogeneous medium with prominence-corona properties. Astrophys. J. 448, 444. CrossRefADSGoogle Scholar
  30. Roberts, B.: 2004, MHD waves in the solar atmosphere. In: Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: Joint View from SOHO and TRACE, Proceedings of SOHO 13 547, 1. Google Scholar
  31. Schunker, H., Cally, P.S.: 2006, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc. 372, 551. CrossRefADSGoogle Scholar
  32. Shelyag, S., Fedun, V., Erdélyi, R.: 2008, Magnetohydrodynamic code for gravitationally-stratified media. Astron. Astrophys. 486, 655S. CrossRefADSGoogle Scholar
  33. Shibata, K.: 1983, Nonlinear MHD wave propagation in the solar chromosphere. I. The case of a uniform vertical magnetic field. Publ. Astron. Soc. Japan 35, 263. ADSMathSciNetGoogle Scholar
  34. Tóth, G.: 1996, A general code for modeling MHD flows on parallel computers: Versatile advection code. Astrophys. Lett. Commun. 34, 245. ADSGoogle Scholar
  35. Vernazza, J., Avrett, E., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser. 45, 635. CrossRefADSGoogle Scholar
  36. Wu, S., Zheng, H., Wang, S., Thompson, B., Plunkett, S., Zhao, X., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the extreme ultraviolet imaging telescope. J. Geophys Res. 106, 25089. CrossRefADSGoogle Scholar
  37. Zhugzhda, Y.D.: 1979, Magnetogravity waves in an isothermal conductive atmosphere. Sov. Astron. 23, 42. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Solar Physics & Space Plasma Research Centre (SP²RC), Department of Applied MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations