Advertisement

Solar Physics

, 259:179 | Cite as

The Impact of Geometry on Observations of CME Brightness and Propagation

  • J. S. Morrill
  • R. A. Howard
  • A. Vourlidas
  • D. F. Webb
  • V. Kunkel
STEREO Science Results at Solar Minimum

Abstract

Coronal mass ejections (CMEs) have a significant impact on space weather and geomagnetic storms and so have been the subject of numerous studies. Most CME observations have been made while these events are near the Sun (e.g., SOHO/LASCO). Recent data from the Coriolis/SMEI and STEREO/SECCHI-HI instruments have imaged CMEs farther into the heliosphere. Analyses of CME observations near the Sun measure the properties of these events by assuming that the emission is in the plane of the sky and hence the speed and mass are lower limits to the true values. However, this assumption cannot be used to analyze optical observations of CMEs far from the Sun, such as observations from SMEI and SECCHI-HI, since the CME source is likely to be far from the limb. In this paper we consider the geometry of observations made by LASCO, SMEI, and SECCHI. We also present results that estimate both CME speed and trajectory by fitting the CME elongations observed by these instruments. Using a constant CME speed does not generally produce profiles that fit observations at both large and small elongation, simultaneously. We include the results of a simple empirical model that alters the CME speed to an estimated value of the solar wind speed to simulate the effect of drag on the propagating CME. This change in speed improves the fit between the model and observations over a broad range of elongations.

Keywords

Coronal mass ejection Solar corona LASCO SMEI SECCHI 

References

  1. Billings, D.E.: 1966, In: A Guide to the Solar Corona, Academic Press, New York. Google Scholar
  2. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Clover, J.M.: 2008, 3D reconstructions of the early-November 2004 CDAW geomagnetic storms: analyses of STELab IPS speed and SMEI density data. J. Geophys. Res. 113, A00A11. doi: 10.1029/2008JA013222. CrossRefGoogle Scholar
  3. Brueckner, G., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle and spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. CrossRefADSGoogle Scholar
  4. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149. CrossRefADSGoogle Scholar
  5. Chen, J.: 1996, Theory of prominence eruption and propagation: interplanetary consequences. J. Geophys. Res. 101, 27499 – 27519. CrossRefADSGoogle Scholar
  6. Eyles, C.J., Siminett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The Solar Mass Ejection Imager (SMEI). Solar Phys. 217, 319 – 347. CrossRefADSGoogle Scholar
  7. Fisher, R.R., Lee, R.H., MacQueen, R.M., Poland, A.I.: 1981, New Mauna Loa coronagraph systems. Appl. Opt. 20, 1094 – 1101. CrossRefADSGoogle Scholar
  8. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207 – 29217. CrossRefADSGoogle Scholar
  9. Hayes, A.P., Vourlidas, A., Howard, R.A.: 2001, Deriving the electron density of the solar corona from the inversion of total brightness measurements. Astrophys. J. 548, 1081 – 1086. CrossRefADSGoogle Scholar
  10. Howard, T.A., Simnett, G.M.: 2008, Interplanetary coronal mass ejections that are undetected by solar coronagraphs. J. Geophys. Res. 113, A08102. doi: 10.1029/2007JA012920. CrossRefGoogle Scholar
  11. Howard, T.A., Tappin, S.J.: 2008, Three-dimensional reconstruction of two solar coronal mass ejections using the STEREO spacecraft. Solar Phys. 252, 373 – 383. doi: 10.1007/s11207-008-9262-0. CrossRefADSGoogle Scholar
  12. Howard, T.A., Webb, D.F., Tappin, S.J., Mizuno, D.R., Johnston, J.C.: 2006, Tracking halo CMEs from 0–1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI). J. Geophys. Res. 111, A04105. doi: 10.1029/2005JA011349. CrossRefGoogle Scholar
  13. Howard, T.A., Frey, C.D., Johnston, J.C., Webb, D.F.: 2007, On the evolution of coronal mass ejections om the interplanetary medium. Astrophys. J. 667, 610 – 625. CrossRefADSGoogle Scholar
  14. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4. CrossRefADSGoogle Scholar
  15. Hundhausen, A.J., Burkepile, J.T., St. Cyr, O.C.: 1994, Speeds of coronal mass ejections: SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 99, 6543 – 6552. CrossRefADSGoogle Scholar
  16. Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., Johnston, J.C., Kahler, S.W., Mozer, J.B., Price, S., Radick, R.R., Sagalyn, R., Sinclair, D., Simnett, G.M., Eyles, C.J., Cooke, M.P., Tappin, S.J., Kuchar, T., Mizuno, D., Webb, D.F., Anderson, P.A., Keil, S.L., Gold, R.E., Waltham, N.R.: 2004, The Solar Mass Ejection Imager (SMEI): The mission. Solar Phys. 225, 177 – 207. CrossRefADSGoogle Scholar
  17. Kahler, S.W., Webb, D.F.: 2007, V-Arc coronal mass ejections observed with the Solar Mass Ejection Imager (SMEI). J. Geophys. Res. 112, A09103. doi: 10.1029/2007JA012358. CrossRefGoogle Scholar
  18. Koomen, M., Howard, R., Hansen, R., Hansen, S.: 1974, The coronal transient of 16 June 1972. Solar Phys. 34, 447 – 452. J. Geophys. Res. 112, A09103. doi: 10.1029/2007JA012358. CrossRefADSGoogle Scholar
  19. Lugaz, N., Vourlidas, A., Roussev, I.I., Morgan, H.: 2009, Solar-terrestrial simulation in the STEREO Era: The 24 – 25 January 2007 eruptions. Solar Phys. 256, 269 – 284. CrossRefADSGoogle Scholar
  20. Manchester, W.B., Vourlidas, A., Toth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., et al.: 2008, Three-dimensional MHD simulation of the 28 October 2003 coronal mas ejection: comparison with LASCO coronagraph observations. Astrophys. J. 684, 1448 – 1460. CrossRefADSGoogle Scholar
  21. Manoharan, P.K.: 2006, Evolution of coronal mass ejection in the inner heliosphere: a study using white-light and scintillations images. J. Geophys. Res. 235, 345 – 368. Google Scholar
  22. Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G., Howard, R.A.: 2004, Influence of coronal mass ejection interaction on propagation of interplanetary shocks. J. Geophys. Res. 109, A06109. doi: 10.1029/2003JA010300. CrossRefGoogle Scholar
  23. McQueen, R.M.: 1974, The high altitude observatory white light coronagraph experiment of Skylab. J. Opt. Soc. Am. 64, 523 – 529. ADSGoogle Scholar
  24. Michels, D.J., Howard, R.A., Koomen, M.J., Plunkett, S., Brueckner, G.E., Lamy, Ph., Schwenn, R., Biesecker, D.A.: 1997. In: Wilson, A. (ed.) Visibility of Earth-Directed Coronal Mass Ejections in Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity SP-404, ESA, Oslo, 567 – 570. Google Scholar
  25. Morrill, J.S., Howard, R., Webb, D.: 2006, Impacts of viewing geometry on CME observations in the heliosphere. Bull. Am. Astron. Soc. 38, 231. ADSGoogle Scholar
  26. Morrill, J.S., Kunkel, V., Howard, R.A.: 2007, Kinematics of CMEs observed by LASCO and SECCHI. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract SH32A-0786. Google Scholar
  27. Morrill, J., Kunkel, V., Halain, J., Harrison, R., Howard, R., Moses, J., Newmark, J., Plunkett, S., Socker, D., Wang, D., Vourlidas, A.: 2007, The impact of geometry on CME observations made by SEECHI. Eos Trans. AGU 88(23), Jt. Assem. Suppl., Abstract SH41A-11. Google Scholar
  28. Sheeley, N., Michels, D., Howard, R., Koomen, M.: 1980, Initial observations with the Solwind coronagraph. Astrophys. J. 237, L99 – L101. CrossRefADSGoogle Scholar
  29. Sheeley, N., Herbst, A.D., Paltchi, C.A., Wang, Y.-M., Howard, R.A., Moese, J.D., et al.: 2008a, SECCHI observations of the Sun’s garden-hose density spiral. Astrophys. J. 674, L109 – L112. CrossRefADSGoogle Scholar
  30. Sheeley, N., Herbst, A.D., Paltchi, C.A., Wang, Y.-M., Howard, R.A., Moese, J.D., et al.: 2008b, Heliospheric images of the solar wind at earth. Astrophys. J. 675, 853 – 862. CrossRefADSGoogle Scholar
  31. Tappin, S.J.: 2006, The deceleration of and interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248. CrossRefADSGoogle Scholar
  32. Thernisien, A.F., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763 – 773. CrossRefADSGoogle Scholar
  33. van de Hulst, H.C.: 1950, Bull. Astron. Inst. Neth. 11, 135 – 150. ADSGoogle Scholar
  34. Vourlidas, A., Howard, R.A.: 2006, The proper treatment of CME brightness: a new methodology and implication for observations. Astrophys. J. 642, 1216 – 1221. CrossRefADSGoogle Scholar
  35. Wang, Y.-M., Sheeley, N.R.: 1994, Global evolution of interplanetary sector structure, coronal holes, and solar wind streams during 1976 – 1993: stackplot displays based on solar magnetic observations. J. Geophys. Res. 99, 6597 – 6608. CrossRefADSGoogle Scholar
  36. Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind. J. Geophys. Res. 99, 4201 – 4220. CrossRefADSGoogle Scholar
  37. Webb, D.F., Mizuno, D.R., Buffington, A., Cooke, M.P., Eyles, C.J., Fry, C.D., et al.: 2006, Solar Mass Ejection Imager (SMEI) observation of coronal mass ejections (CMEs) in the heliosphere. J. Geophys. Res. 111, A12101. doi: 10.1029/2006JA011655. CrossRefADSGoogle Scholar
  38. Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Mizuno, D.R., Johnston, J.C., Jackson, B.V.: 2009, Studying geoeffective ICMEs between the sun and earth: space weather implications of SMEI observations. Space Weather 7, S05002. doi: 10.1029/2008SW000409. CrossRefGoogle Scholar
  39. Woo, R., Armstrong, J.W.: 1985, Doppler scintillations observations of interplanetary shocks within 0.3 AU. J. Geophys. Res. 90, 154 – 162. CrossRefADSGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • J. S. Morrill
    • 1
  • R. A. Howard
    • 1
  • A. Vourlidas
    • 1
  • D. F. Webb
    • 2
    • 3
  • V. Kunkel
    • 4
  1. 1.Space Sciences DivisionNaval Research LaboratoryWashingtonUSA
  2. 2.Institute for Scientific ResearchBoston CollegeChestnut HillUSA
  3. 3.Air Force Research LaboratorySpace Vehicles DirectorateHanscom AFBUSA
  4. 4.George Mason UniversityFairfaxUSA

Personalised recommendations