Solar Physics

, Volume 256, Issue 1–2, pp 327–344 | Cite as

Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure

  • E. K. J. Kilpua
  • J. G. Luhmann
  • J. Gosling
  • Y. Li
  • H. Elliott
  • C. T. Russell
  • L. Jian
  • A. B. Galvin
  • D. Larson
  • P. Schroeder
  • K. Simunac
  • G. Petrie
Open Access
STEREO SCIENCE RESULTS AT SOLAR MINIMUM

Abstract

It has been realized for some time that the slow solar wind with its embedded heliospheric current sheet often exhibits complex features suggesting at least partially transient origin. In this paper we investigate the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055). These occur at the time of minimum solar activity when the interplanetary medium is dominated by recurrent high-speed streams and large-scale interplanetary coronal mass ejections (ICMEs) are rare. However, the signatures of transients with small scale-sizes and/or low magnetic field strength (comparable with the typical solar wind value, ∼ 5 nT) are frequently found in the slow solar wind at these times. These events do not exhibit significant speed gradients across the structure, but instead appear to move with the surrounding flow. Source mapping using models based on GONG magnetograms suggests that these transients come from the vicinity of coronal source surface sector boundaries. In situ they are correspondingly observed in the vicinity of high density structures where the dominant electron heat flux reverses its flow polarity. These weak transients might be indications of dynamical changes at the coronal hole boundaries or at the edges of the helmet streamer belt previously reported in coronagraph observations. Our analysis supports the idea that even at solar minimum, a considerable fraction of the slow solar wind is transient in nature.

References

  1. Acuna, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabó, A., Luhmann, J.G.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 136, 203 – 226. CrossRefADSGoogle Scholar
  2. Crooker, N.U., Siscoe, G.L., Shodhan, S., Webb, D.F., Gosling, J.T., Smith, E.J.: 1993, Multiple heliospheric current sheets and coronal streamer belt dynamics. J. Geophys. Res. 101, 2467 – 2474. CrossRefGoogle Scholar
  3. Crooker, N.U., Burton, M.E., Phillips, J.L., Smith, E.J., Balogh, A.: 1996, Heliospheric plasma sheets as small-scale transients. J. Geophys. Res. 101, 2467 – 2474. CrossRefADSGoogle Scholar
  4. Galvin, A.B., Kistler, L.M., Popecki, M.A., et al.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437 – 486. CrossRefADSGoogle Scholar
  5. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Priest, E.R., Lee, L.C., Russell, C.T. (eds.) Physics of Magnetic Flux Ropes, Geophys. Monogr. 58, AGU, Washington, 343 – 364. Google Scholar
  6. Gosling, J.T.: 1997, Coronal mass ejection: an overview. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. 99, AGU, Washington, 245. Google Scholar
  7. Gosling, J.T., Pizzo, V., Bame, S.J.: 1973, Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res. 78, 2001 – 2009. CrossRefADSGoogle Scholar
  8. Gosling, J.T., Skoug, R.M., Feldman, W.C.: 2001, Solar wind electron halo depletions at 90° pitch angle. Geophys. Res. Lett. 28, 4155 – 4158. CrossRefADSGoogle Scholar
  9. Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438 – 5448. CrossRefADSGoogle Scholar
  10. Gosling, J.T., Skoug, R.M., Feldman, W.C., McComas, D.J.: 2002, Symmetric suprathermal electron depletions on closed field lines in the solar wind. Geophys. Res. Lett. 29, 14-1. CiteID 1573. CrossRefADSGoogle Scholar
  11. Jian, L.: 2008, Radial evolution of large-scale solar wind structures, Ph.D. Thesis, Univ. California, Los Angeles. Google Scholar
  12. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. CrossRefADSGoogle Scholar
  13. Kahler, S.W., Crooker, N.U., Gosling, J.T.: 1996, The topology of intrasector reversals of the interplanetary magnetic field. J. Geophys. Res. 101, 24373 – 24382. CrossRefADSGoogle Scholar
  14. Kahler, S.W., Crooker, N.U., Larson, D.E.: 2003, Probing the magnetic polarity structure of the heliospheric current sheet. J. Geophys. Res. 108. CiteID 1316. Google Scholar
  15. Kaiser, M., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2007, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. doi:10.1007/s11214-007-9277-0. CrossRefADSGoogle Scholar
  16. Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The Wind magnetic field investigation. Space Sci. Rev. 71, 207 – 229. CrossRefADSGoogle Scholar
  17. Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Reme, H., Bosqued, J.M., Coutelier, J., Cotin, F., D’Uston, C., Wenzel, K.-P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: 1995, A three-dimensional plasma and energetic particle investigation for the Wind spacecraft. Space Sci. Rev. 71, 125 – 153. CrossRefADSGoogle Scholar
  18. Lionello, R., Riley, P., Linker, J.A., Mikic, Z.: 2005, The effects of differential rotation on the magnetic structure of the solar corona: magnetohydrodynamic simulations. Astrophys. J. 625, 463 – 473. CrossRefADSGoogle Scholar
  19. Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res. 92, 11189 – 11194. CrossRefADSGoogle Scholar
  20. McComas, D.J., Gosling, J.T., Phillips, J.L., Bame, S.J., Luhmann, J.G., Smith, E.J.: 1989, Electron heat flux dropouts in the solar wind – evidence for interplanetary magnetic field reconnection? Solar Phys. 94, 6907 – 6916. Google Scholar
  21. Moldwin, M.B., Ford, S., Lepping, R., Slavin, J., Szabo, A.: 2000, Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27, 57 – 60. CrossRefADSGoogle Scholar
  22. Mulligan, T., Russell, C.T., Anderson, B.J., Lohr, D.A., Rust, D., Toth, B.A., Zanetti, L.J., Acuna, M.H., Lepping, R.P., Golsing, J.T.: 1999, Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations. J. Geophys. Res. 104, 28217. doi:10.1029/1999JA900215. CrossRefADSGoogle Scholar
  23. Neugebauer, M., Goldstein, R.: 1997, Particle and field signatures of coronal mass ejections in the solar wind. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. 99, AGU, Washington, 245. Google Scholar
  24. Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100, 23397. CrossRefADSGoogle Scholar
  25. Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104. doi:10.1029/2004JA010598. CrossRefGoogle Scholar
  26. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, L10110. CrossRefADSGoogle Scholar
  27. Rouillard, A.P., Savani, N., Davies, J.A., Lavraud, B., Forsyth, R.J., Morley, S.K., Opitz, A., Sheeley, N.R., Sauvaud, J.-A., Simunac, K.D.C., Luhmann, J.G., Galvin, A.G., Crothers, S.R., Davis, S.J., Harrison, R.A., Lockwood, M., Eyles, C.J., Bewsher, D., Brown, D.S.: 2009, A multispacecraft analysis of small scale transient entrained by solar wind streams. Solar Phys. this issue. doi:10.1007/s11207-009-9329-6.
  28. Russell, C.T., Shinde, A.A.: 2003, ICME identification from solar wind ion measurements. Solar Phys. 216, 285 – 294. CrossRefADSGoogle Scholar
  29. Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Medale, J.-L., Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schröder, P., Louarn, P., Dandouras, I., Penou, E.: 2008, The IMPACT Solar Wind Electron Analyzer (SWEA). Space Rev. Sci. 136, 227 – 239. CrossRefADSGoogle Scholar
  30. Sheeley, N.R. Jr., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R . Astrophys. J. 484, 472 – 478. CrossRefADSGoogle Scholar
  31. Sheeley, N.R. Jr., Herbst, A.D., Palatchi, C.A., Wang, Y.-M., Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Burlaga, L.F., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Harrison, R.A., Davis, C.J., Eyles, C.J., Halain, J.P., Wang, D., Rich, N.B., Battams, K., Esfandiari, E., Stenborg, G.: 2008a, Heliospheric images of the solar wind at Earth. Astrophys. J. 675, 853 – 862. CrossRefADSGoogle Scholar
  32. Sheeley, N.R. Jr., Herbst, A.D., Palatchi, C.A., Wang, Y.-M., Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Burlaga, L.F., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Harrison, R.A., Davis, C.J., Eyles, C.J., Halain, J.P., Wang, D., Rich, N.B., Battams, K., Esfandiari, E., Stenborg, G.: 2008b, SECCHI observations of the Sun’s Garden-Hose density spiral. Astrophys. J. 674, L109 – L112. CrossRefADSGoogle Scholar
  33. Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 – 732. CrossRefADSGoogle Scholar
  34. Wang, Y.-M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Schwenn, R., Simnett, G.M.: 1998, Origin of streamer material in the outer corona. Astrophys. J. 498, L165 – L168. CrossRefADSGoogle Scholar
  35. Wang, Y.-M., Sheeley, N.R. Jr., Socker, D.G., Howard, R.A., Rich, N.B.: 2000, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25133 – 25142. CrossRefADSGoogle Scholar
  36. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi:10.1029/2003JA010282. CrossRefGoogle Scholar
  37. Zhao, X.-P., Hundhausen, A.J.: 1983, Spatial structure of solar wind in 1976. J. Geophys. Res. 88, 451 – 454. CrossRefADSGoogle Scholar
  38. Zurbuchen, T.H., Richardson, I.G.: 2006, In situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • E. K. J. Kilpua
    • 1
    • 2
  • J. G. Luhmann
    • 2
  • J. Gosling
    • 3
  • Y. Li
    • 2
  • H. Elliott
    • 4
  • C. T. Russell
    • 5
  • L. Jian
    • 5
  • A. B. Galvin
    • 6
  • D. Larson
    • 2
  • P. Schroeder
    • 2
  • K. Simunac
    • 6
  • G. Petrie
    • 7
  1. 1.Department of Physical Sciences, Theoretical Physics DivisionUniversity of HelsinkiHelsinkiFinland
  2. 2.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  4. 4.Southwest Research InstituteSan AntonioUSA
  5. 5.Institute of Geophysics and Planetary PhysicsUCLALos AngelesUSA
  6. 6.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  7. 7.National Solar ObservatoryTucsonUSA

Personalised recommendations