Solar Physics

, Volume 256, Issue 1–2, pp 427–441 | Cite as

Optimized Grad – Shafranov Reconstruction of a Magnetic Cloud Using STEREO-Wind Observations

  • C. Möstl
  • C. J. Farrugia
  • H. K. Biernat
  • M. Leitner
  • E. K. J. Kilpua
  • A. B. Galvin
  • J. G. Luhmann
Open Access
STEREO SCIENCE RESULTS AT SOLAR MINIMUM

Abstract

We present results on the geometry of a magnetic cloud (MC) on 23 May 2007 from a comprehensive analysis of Wind and STEREO observations. We first apply a Grad – Shafranov reconstruction to the STEREO-A plasma and magnetic field data, delivered by the PLASTIC and IMPACT instruments. We then optimize the resulting field map with the aid of observations by Wind, which were made at the very outer boundary of the cloud, at a spacecraft angular separation of 6°. For the correct choice of reconstruction parameters such as axis orientation, interval and grid size, we find both a very good match between the predicted magnetic field at the position of Wind and the actual observations as well as consistent timing. We argue that the reconstruction captures almost the full extent of the cross-section of the cloud. The resulting shape transverse to the invariant axis consists of distorted ellipses and is slightly flattened in the direction of motion. The MC axis is inclined at −58° to the ecliptic with an axial field strength of 12 nT. We derive integrated axial fluxes and currents with increased precision, which we contrast with the results from linear force-free fitting. The helical geometry of the MC with almost constant twist (≈1.5 turns AU−1) is not consistent with the linear force-free Lundquist model. We also find that the cloud is non-force-free (|J|/|J|>0.3) in about a quarter of the cloud cross sectional area, particularly in the back part which is interacting with the trailing high speed stream. Based on the optimized reconstruction we put forward preliminary guidelines for the improved use of single-spacecraft Grad – Shafranov reconstruction. The results also give us the opportunity to compare the CME direction inferred from STEREO/SECCHI observations by Mierla et al. (Solar Phys.252, 385, 2008) with the three-dimensional configuration of the MC at 1 AU. This yields an almost radial CME propagation from the Sun to the Earth.

References

  1. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. CrossRefADSGoogle Scholar
  2. Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. CrossRefADSGoogle Scholar
  3. Burlaga, L.F., Lepping, R.P., Jones, J.A.: 1990, Global configuration of a magnetic cloud. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophysical Monograph Ser. 58, AGU, Washington DC, 377. Google Scholar
  4. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. CrossRefADSGoogle Scholar
  5. Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. (Space Phys.) 108, 1156. doi:10.1029/2002JA009817. CrossRefADSGoogle Scholar
  6. Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res. (Space Phys.) 108, 1362. doi:10.1029/2003JA009942. CrossRefADSGoogle Scholar
  7. Dasso, S., Gulisano, A.M., Mandrini, C.H., Démoulin, P.: 2005, Model-independent large-scale magnetohydrodynamic quantities in magnetic clouds. Adv. Space Res. 35, 2172. doi:10.1016/j.asr.2005.03.054. CrossRefADSGoogle Scholar
  8. Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. doi:10.1051/0004-6361:20064806. MATHCrossRefADSGoogle Scholar
  9. Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. doi:10.1007/s11207-007-9034-2. CrossRefADSGoogle Scholar
  10. Démoulin, P.: 2008, A review of the quantitative links between CMEs and magnetic clouds. Ann. Geophys. 26, 3113. ADSGoogle Scholar
  11. Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys. 250, 347. doi:10.1007/s11207-008-9221-9. CrossRefADSGoogle Scholar
  12. Farrugia, C.J.: 1997, Recent work on modelling the global field line topology of interplanetary magnetic clouds: A review. In: Crooker, N., Joselyn, J.A., Feynmann, J. (eds.) Coronal Mass Ejections, Geophysical Monograph Ser. 99, AGU, Washington DC, 177. Google Scholar
  13. Farrugia, C.J., Osherovich, V.A., Burlaga, L.F.: 1995, Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds. J. Geophys. Res. 100, 12293. CrossRefADSGoogle Scholar
  14. Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Lepping, R.P.: 1992, A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds. In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven, Proc. 3rd, COSPAR Colloq., 611. Google Scholar
  15. Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., Lazarus, A.J.: 1993a, A study of an expanding interplanetary magnetic cloud and its interaction with the Earth’s magnetosphere – The interplanetary aspect. J. Geophys. Res. 98, 7621. CrossRefADSGoogle Scholar
  16. Farrugia, C.J., Richardson, I.G., Burlaga, L.F., Lepping, R.P., Osherovich, V.A.: 1993b, Simultaneous observations of solar MeV particles in a magnetic cloud and in the Earth’s northern tail lobe – Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage. J. Geophys. Res. 98, 15497. CrossRefADSGoogle Scholar
  17. Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., Fitzenreiter, R.J., Steinberg, J.T., Lazarus, A.J., Lin, R.P., Larson, D., Dasso, S., Gratton, F.T., Lin, Y., Berdichevsky, D.: 1999, A uniform-twist magnetic flux rope in the solar wind. In: Suess, S.T., Gary, G.A., Nerney, S.F. (eds.) Solar Wind Nine, AIP Conf. Ser. 471, 745. Google Scholar
  18. Farrugia, C.J., Vasquez, B., Richardson, I.G., Torbert, R.B., Burlaga, L.F., Biernat, H.K., Mühlbachler, S., Ogilvie, K.W., Lepping, R.P., Scudder, J.D., et al.: 2001, A reconnection layer associated with a magnetic cloud. Adv. Space Res. 28, 759. CrossRefADSGoogle Scholar
  19. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., et al.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev., 136, 437. CrossRefADSGoogle Scholar
  20. Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: Neugebauer, M. (ed.) Solar Wind Five, NASA Conf. Publ. CP-2280, 731. Google Scholar
  21. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. doi:10.1007/s11214-006-9102-1. CrossRefADSGoogle Scholar
  22. Gosling, J.T., Eriksson, S., McComas, D.J., Phan, T.D., Skoug, R.M.: 2007, Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. J. Geophys. Res. (Space Phys.) 112, A08106. doi:10.1029/2007JA012418. CrossRefGoogle Scholar
  23. Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2007, Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation. Adv. Space Res. 40, 1881. doi:10.1016/j.asr.2007.09.001. CrossRefADSGoogle Scholar
  24. Hasegawa, H., Sonnerup, B., Dunlop, M., Balogh, A., Haaland, S., Klecker, B., Paschmann, G., Lavraud, B., Dandouras, I., Rème, H.: 2004, Reconstruction of two-dimensional magnetopause structures from Cluster observations: Verification of method. Ann. Geophys. 22, 1251. ADSGoogle Scholar
  25. Hasegawa, H., Sonnerup, B.U.Ö., Klecker, B., Paschmann, G., Dunlop, M.W., Rème, H.: 2005, Optimal reconstruction of magnetopause structures from Cluster data. Ann. Geophys. 23, 973. ADSGoogle Scholar
  26. Hasegawa, H., Sonnerup, B.U.Ö., Owen, C.J., Klecker, B., Paschmann, G., Balogh, A., Rème, H.: 2006, The structure of flux transfer events recovered from Cluster data. Ann. Geophys. 24, 603. ADSCrossRefGoogle Scholar
  27. Hau, L.N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899. doi:10.1029/1999JA900002. CrossRefADSGoogle Scholar
  28. Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. (Space Phys.) 107, 1142. doi:10.1029/2001JA000293. CrossRefADSGoogle Scholar
  29. Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. (Space Phys.) 109, A03102. doi:10.1029/2003JA010101. CrossRefGoogle Scholar
  30. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. doi:10.1007/s11207-006-0133-2. CrossRefADSGoogle Scholar
  31. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. doi:10.1007/s11214-007-9277-0. CrossRefADSGoogle Scholar
  32. Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, deHoffmann – Teller analysis. In: Paschmann, G., Daly, P.W. (eds.) Analysis Methods for Multi-Spacecraft Data, ISSI Sience Rep. Ser. 1, ESA, Noordwijk 221. Google Scholar
  33. Kilpua, E.K.J., Liewer, P., Farrugia, C., Luhmann, J., Möstl, C., Li, Y., Liu, Y., Lynch, B., Vourlidas, A., Acuna, M., Galvin, A.B., Larson, D., Russell, C., Sauvaud, J.: 2009, Multispacecraft observations of magnetic clouds and their solar origins May 19 – 23, 2007. Solar Phys. 254, 325. doi:10.1007/s11207-008-9300-y. CrossRefADSGoogle Scholar
  34. Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K.: 2007, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res. (Space Phys.) 112, A06113. doi:10.1029/2006JA011940. CrossRefGoogle Scholar
  35. Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. CrossRefADSGoogle Scholar
  36. Lepping, R.P., et al.: 1995, The wind magnetic field investigation, Space Sci. Rev., 71, 207. CrossRefADSGoogle Scholar
  37. Lepping, R.P., Wu, C.C., Berdichevsky, D.B., Ferguson, T.: 2008, Estimates of magnetic cloud expansion at 1 AU. Ann. Geophys. 26, 1919. ADSCrossRefGoogle Scholar
  38. Liu, Y., Richardson, J.D., Belcher, J.W., Wang, C., Hu, Q., Kasper, J.C.: 2006, Constraints on the global structure of magnetic clouds: Transverse size and curvature. J. Geophys. Res. (Space Phys.) 111, A12S03. doi:10.1029/2006JA011890. CrossRefGoogle Scholar
  39. Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133. doi:10.1086/587839. CrossRefADSGoogle Scholar
  40. Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., Dasso, S.: 2007, Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45. doi:10.1007/s11207-007-0330-7. CrossRefADSGoogle Scholar
  41. Luhmann, J. G., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev., 136, 117. CrossRefADSGoogle Scholar
  42. Marubashi, K.: 1997, Interplanetary flux ropes and solar filaments. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophysical Monograph Ser. 99, AGU, Washigton DC, 147. Google Scholar
  43. Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. ADSCrossRefGoogle Scholar
  44. Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., St. Cyr, O.C., Stenborg, G., Howard, R.A.: 2008, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Solar Phys. 252, 385. doi:10.1007/s11207-008-9267-8. CrossRefADSGoogle Scholar
  45. Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. ADSCrossRefGoogle Scholar
  46. Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Huttunen, K.E.J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., Biernat, H.K.: 2009, Multi-spacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J. Geophys. Res. (Space Phys.) 114, A04102. doi:10.1029/2008JA013657. CrossRefGoogle Scholar
  47. Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106, 10581. doi:10.1029/2000JA900170. CrossRefADSGoogle Scholar
  48. Mulligan, T., Russell, C.T., Anderson, B.J., Lohr, D.A., Rust, D., Toth, B.A., Zanetti, L.J., Acuna, M.H., Lepping, R.P., Gosling, J.T.: 1999, Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations. J. Geophys. Res. 104, 28217. CrossRefADSGoogle Scholar
  49. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., et al.: 1995, SWE, A comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev., 71, 55. CrossRefADSGoogle Scholar
  50. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. doi:10.1086/512060. CrossRefADSGoogle Scholar
  51. Reinard, A.A.: 2008, Analysis of interplanetary coronal mass ejection parameters as a function of energetics, source location, and magnetic structure. Astrophys. J. 682, 1289. doi:10.1086/589322. CrossRefADSGoogle Scholar
  52. Riley, P., Crooker, N.U.: 2004, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035. doi:10.1086/379974. CrossRefADSGoogle Scholar
  53. Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. doi:10.1016/j.jastp.2004.03.019. CrossRefADSGoogle Scholar
  54. Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: Remote solar and in situ observations. Astrophys. J. 647, 648. doi:10.1086/505383. CrossRefADSGoogle Scholar
  55. Shodhan, S., Crooker, N.U., Kahler, S.W., Fitzenreiter, R.J., Larson, D.E., Lepping, R.P., Siscoe, G.L., Gosling, J.T.: 2000, Counterstreaming electrons in magnetic clouds. J. Geophys. Res. 105, 27261. doi:10.1029/2000JA000060. CrossRefADSGoogle Scholar
  56. Sonnerup, B.U.Ö., Hasegawa, H., Paschmann, G.: 2004, Anatomy of a flux transfer event seen by cluster. Geophys. Res. Lett. 31, L11803. doi:10.1029/2004GL020134. CrossRefADSGoogle Scholar
  57. Sonnerup, B.U.Ö., Hasegawa, H., Teh, W.L., Hau, L.N.: 2006, Grad – Shafranov reconstruction: An overview. J. Geophys. Res. (Space Phys.) 111, A09204. doi:10.1029/2006JA011717. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • C. Möstl
    • 1
    • 2
  • C. J. Farrugia
    • 3
  • H. K. Biernat
    • 1
    • 2
  • M. Leitner
    • 4
  • E. K. J. Kilpua
    • 5
  • A. B. Galvin
    • 3
  • J. G. Luhmann
    • 6
  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.Space Science Center and Dept. of PhysicsUniversity of New HampshireDurhamUSA
  4. 4.Institute for Astro- and Particle PhysicsUniversity of InnsbruckInnsbruckAustria
  5. 5.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  6. 6.Space Science LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations