Solar Physics

, Volume 256, Issue 1–2, pp 345–363

Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period

  • C. O. Lee
  • J. G. Luhmann
  • X. P. Zhao
  • Y. Liu
  • P. Riley
  • C. N. Arge
  • C. T. Russell
  • I. de Pater
Open Access
STEREO SCIENCE RESULTS AT SOLAR MINIMUM

Abstract

The current solar cycle minimum seems to have unusual properties that appear to be related to weak solar polar magnetic fields. We investigate signatures of this unusual polar field in the ecliptic near-Earth interplanetary magnetic field (IMF) for the STEREO period of observations. Using 1 AU OMNI data, we find that for the current solar cycle declining phase to minimum period the peak of the distribution for the values of the ecliptic IMF magnitude is lower compared to a similar phase of the previous solar cycle. We investigate the sources of these weak fields. Our results suggest that they are related to the solar wind stream structure, which is enhanced by the weak polar fields. The direct role of the solar field is therefore complicated by this effect, which redistributes the solar magnetic flux at 1 AU nonuniformly at low to mid heliolatitudes.

Keywords

STEREO mission Solar wind Solar cycle, models Solar cycle, observations Magnetic fields, observations Magnetic fields, interplanetary 

References

  1. Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., Luhmann, J.G.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 136, 203 – 226. CrossRefADSGoogle Scholar
  2. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465 – 10479. CrossRefADSGoogle Scholar
  3. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar Terr. Phys. 66, 1295 – 1309. CrossRefADSGoogle Scholar
  4. Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J., Tsurutani, B.T.: 1992, The magnetic field investigation on the Ulysses mission: Instrumentation and preliminary scientific results. Astron. Astrophys. Suppl. Ser. 92, 221 – 236. ADSGoogle Scholar
  5. Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The Ulysses solar wind plasma experiment. Astron. Astrophys. Suppl. Ser. 92, 237 – 265. ADSGoogle Scholar
  6. Delaboudiniere, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., et al.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. CrossRefADSGoogle Scholar
  7. Henney, C.J., Keller, C.U., Harvey, J.W.: 2006, SOLIS-VSM solar vector magnetograms. In: Casini, R., Lites, B.W. (eds.) Solar Polarization 4 CS-358, Astron. Soc. Pac., San Francisco, 92 – 95. Google Scholar
  8. Hiltula, T., Mursula, K.: 2006, Long dance of the bashful ballerina. Geophys. Res. Lett. 33, L03105. doi:10.1029/2005GL025198. CrossRefGoogle Scholar
  9. Howard, R.A., Moses, J.D., Socker, D.G., Dere, K.P., Cook, J.W.: 2002, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Adv. Space Res. 29, 2017 – 2026. CrossRefADSGoogle Scholar
  10. Issautier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowell, R.J., McComas, D.J.: 2008, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: Not so dense, not so hot. Geophys. Res. Lett. 35, L19101. doi:10.1029/2008GL034912. CrossRefADSGoogle Scholar
  11. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. CrossRefADSGoogle Scholar
  12. Kaiser, M.: 2005, The STEREO mission: an overview. Adv. Space Res. 36, 1483 – 1488. CrossRefADSGoogle Scholar
  13. Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The Solar Wind at 1 AU During the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Solar Phys. 254, 155 – 183. CrossRefADSGoogle Scholar
  14. Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154. doi:10.1029/2001JA007550. CrossRefGoogle Scholar
  15. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.A., Aoustin, C., Mewaldt, R.A., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117 – 184. CrossRefADSGoogle Scholar
  16. Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of cycle 23: effects of the weak solar polar field on high speed streams. Solar Phys. this issue. doi:10.1007/s11207-009-9354-5.
  17. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103. doi:10.1029/2008GL034896. CrossRefADSGoogle Scholar
  18. Neugebauer, M., Goldstein, M., Goldstein, B.E.: 1997, Features observed in the trailing regions of interplanetary clouds from coronal mass ejections. J. Geophys. Res. 102, 19743 – 19751. CrossRefADSGoogle Scholar
  19. Odstrcil, D.: 2003, Modeling 3D solar wind structure. Adv. Space Res. 32, 497 – 506. CrossRefADSGoogle Scholar
  20. Pizzo, V.J.: 1982, A three-dimensional model of corotating streams in the solar wind: magnetohydrodynamic streams. J. Geophys. Res. 87, 4374 – 4394. CrossRefADSGoogle Scholar
  21. Riley, P., Gosling, J.T.: 2007, On the origin of near-radial fields in the heliosphere: numerical simulations. J. Geophys. Res. 112, A07102. doi:10.1029/2006JA012210. CrossRefGoogle Scholar
  22. Riley, P., Linker, J.A., Mikic, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889 – 15901. CrossRefADSGoogle Scholar
  23. Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232 – 245. Google Scholar
  24. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. CrossRefADSGoogle Scholar
  25. Smith, E.J., Balogh, A.: 2009, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, in press. doi:10.1029/2008GL035345.
  26. Svalgaard, L., Duvall Jr., T.L., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225 – 240. CrossRefADSGoogle Scholar
  27. Zhao, X.P., Webb, D.F.: 2003, Source regions and storm effectiveness of frontside full halo coronal mass ejections. J. Geophys. Res. 108, 1234. doi:10.1029/2002JA009606. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • C. O. Lee
    • 1
    • 2
  • J. G. Luhmann
    • 1
  • X. P. Zhao
    • 3
  • Y. Liu
    • 3
  • P. Riley
    • 4
  • C. N. Arge
    • 5
  • C. T. Russell
    • 6
  • I. de Pater
    • 2
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  3. 3.W. W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  4. 4.Predictive Science, Inc.San DiegoUSA
  5. 5.Air Force Research Laboratory/Space Vehicles DirectorateKirtland Air Force BaseUSA
  6. 6.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations